
§2 DYNAMICS

§2.1 Surface vs. body forces, and the concept of pressure

We need to distinguish ‘surface’ forces from ‘body’ or ‘volume’ forces. These are, respectively, forces on a
fluid element that are proportional to its

• surface area — e.g. pressure or frictional, i.e. viscous, forces, or

• mass or volume — e.g. weight (gravitational force), or electric or magnetic force.

Surface forces:

We can motivate the idea of surface force by taking the case of a gas, and zooming-in to the molecular
scale. Consider molecules of gas crossing a fixed ‘control surface’ S, in the form of a plane dividing the
region occupied by the gas into two sub-regions 1, 2:

Molecules that cross the surface S from region 1 to region 2, as shown, have a positive velocity component
in the n direction, and therefore systematically transfer momentum in the n direction from region 1 to
region 2. Conversely, molecules that cross the surface S from region 2 to region 1 have a negative velocity
component in the n direction, and transfer momentum in the −n direction from region 2 to region 1. The
effects add up, and the average effect is equivalent to a force in n direction. Region 1 pushes region 2 in
the +n direction, and region 2 pushes region 1 in the −n direction. This ‘pressure force’ ∝ surface area.
It is therefore a surface force.

Pressure forces are strictly speaking isotropic, i.e. direction-independent, by definition. This means that
they are described by a scalar field p(x, t) (called the pressure) such that the force exerted across an
arbitrarily-oriented surface element δS at x with unit normal n is always np δS, independent of the
orientation chosen. The sign convention is such that +np δS is the force exerted on the fluid into which n
points, by the fluid away from which n points. If the fluid as a whole is at rest (i.e. at rest apart from the
molecular-scale motions), then the pressure force is the only surface force.

1



Viscous (i.e. frictional) forces in a moving fluid are also surface forces. In our gas example they are mainly
associated with transfer, from region 1 to region 2, of tangential momentum, i.e. of momentum components
in directions perpendicular to n. We shall neglect viscous forces throughout these lectures, and consider
an ‘inviscid’ (frictionless) fluid only. This is a good model for some purposes, for instance water waves,
flow over weirs, flow around rising, oscillating, or collapsing bubbles, and most of the flow field around
streamlined bodies like aircraft.

*Viscous forces in gases are usually much smaller than pressure forces, because the momentum-transfer effects tend to cancel
rather than add up. If the fluid as a whole is at rest, then the cancellation is complete because, for instance, molecules with
rightward momentum cross the surface S both ways in equal numbers, on average.*

A more sophisticated treatment of surface forces would require us to introduce the stress tensor; this is
done in Part IIB Fluids, and in Part IIA Theoretical Geophysics.

‘Volume’ or ‘body’ forces:

Let F be the body force per unit mass. (Example: F = g where g = gravitational ‘acceleration’.) Then
the force per unit volume is ρF, and the force on volume δV is ρFδV .

The case F = g is also an example where the volume force is ‘conservative’, meaning that ∃ a potential Φ
with g = −∇Φ, hence ρF δV = ρg δV = −ρ∇Φ δV .

(NB: Some versions of the example sheets use the symbol χ for the force potential, rather than Φ.)

§2.2 Momentum Equation

As for mass conservation, consider an arbitrary volume V , fixed in space, and bounded by a surface S,
with outward normal n

Momentum inside V is

∫
V

ρu dV

How does the momentum inside V change? Need to take account of:

1. volume forces

2. surface forces

3. the fact that fluid entering or leaving takes momentum with it.

Consider, as before, the small volume of a ‘slug’ or slanted cylinder of fluid swept out by the area element
δS in time δt, where δS starts on the surface S and moves with the fluid, i.e. with velocity u:
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This time we are interested in momentum rather than mass; the momentum of the slanted cylinder of
fluid is ρu (u.n) δt δS . So the change in the total momentum within the (fixed) volume V due to (3)
alone is δt times

∫
S
ρ(u.n) u dS. So the rate of change in the total momentum within V , taking all three

contributions (1)–(3) into account, is

d

dt

∫
V

ρu dV =

∫
V

ρF dV −
∫
S

pn dS −
∫
S

ρu (u.n) dS .

This is one way of writing the integral form of the momentum equation.

Here’s another way: take the ith (Cartesian) component:

d

dt

∫
V

ρ ui dV =

∫
V

ρFi dV −
∫
S

pni dS −
∫
S

ρuiujnj dS .

Now use the generalized divergence theorem to convert surface integrals into volume integrals in the above.
(For any suffix k, replace nk by ∂/∂xk in the integrands of the surface integrals while replacing surface
integration by volume integration.) The result is

d

dt

∫
V

ρ ui dV =

∫
V

(
ρFi −

∂p

∂xi
− ∂

∂xj
(ρuiuj)

)
dV.

V is fixed, so (d/dt)
∫
V

=
∫
V

(∂/∂t) as before. Furthermore, V is arbitrary. Hence

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ρFi .

The left-hand side may be rearranged to give

ρ

{
∂ui
∂t

+ uj
∂ui
∂xj

}
+ ui

{
∂ρ

∂t
+

∂

∂xj
(ρuj)

}
= − ∂p

∂xi
+ ρFi .
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The second brace vanishes by mass conservation, even for compressible flow; hence

ρ
Du

Dt
= −∇p+ ρF .

This is the Euler equation. In this form it can be recognized as a statement of Newton’s 2nd law for a
inviscid (frictionless) fluid. It says that, for an infinitesimal volume of fluid, mass times acceleration =
total force on the same volume, namely force due to pressure gradient plus whatever body forces are being
exerted.

If the body forces are all zero, then momentum is conserved (again note form
∂( )

∂t
+∇.{ } = 0):

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = 0 .

Here δij is the Kronecker delta, i.e. the components of the identity tensor.

Like all other field-theoretic conservation equations, this equation says, as already mentioned, that a four-
dimensional divergence vanishes. The ‘flux’ whose 3-D divergence appears here is a second-rank tensor,
ρuiuj + pδij, and may be called the total momentum flux. It is customary in parts of the literature to
call the ‘advective’ contribution ρuiuj, corresponding to the contribution (3) above, the ‘advective’ or
‘dynamic’ momentum flux, or sometimes, confusingly, just ‘the’ momentum flux.

Together with the mass conservation equation, ∇.u = 0, and a boundary condition on u.n, the foregoing
equations (expressing the momentum balance and expressing mass conservation) are sufficient to determine
the motion, for the incompressible, constant-density flows under consideration.

We next turn to some applications of the momentum equation in integral form. One can often make useful
deductions without solving the whole flow problem, starting with a qualitative knowledge of what the flow
is like (perhaps derived from observation or experiment) and then applying integral relations such as the
integral forms of the mass and momentum equations.

The first of these applications is to find the force on a curved pipe. This might, for instance, be something
you would need to know if you were interested in the safety of some industrial process using high-speed
fluid flow.

§2.3 Applications of momentum integral

Pressure force on a curved section of pipe

(Think of liquid sodium rushing round the bend of a pipe in a nuclear power station, or water rushing
through a fire hose.) Let pipe have cross-sectional area A. Assume steady flow at speed U . For simplicity,
though this is not essential, assume that U is parallel to the pipe, in its straight sections, and uniform
across the pipe:
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Recall momentum
equation in integral form,

with volume V and surface S ∪ S1 ∪ S2 as above:

d

dt

∫
V

ρu dV =

∫
V

ρg dV −
∫
S∪S1∪S2

{
pn + ρ (u.n)u

}
dS .

(g = −∇Φ is the gravity acceleration)

So total force by fluid on pipe

=

∫
S

pndS (n is normal out of fluid, as before)

=

∫
V

ρg dV −
∫
S1∪S2

pn dS −
∫
S1∪S2

ρ (u.n)u dS ,

where use has been made of the boundary condition u.n = 0 on the pipe wall, assumed impermeable. So
the force by the fluid on the pipe is equal to the weight, under gravity, of fluid in the pipe plus the two
surface integrals over S1 ∪ S2, which give

− Ap(n1 + n2)− (−ρAU)(−Un1)− (ρAU)(Un2)

= −A(p+ ρU2)(n1 + n2) ,

assuming p, as well as U , approximately uniform over the cross-sections S1, S2.
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Note that this force depends on the ‘background’ pressure p (e.g. determined by pumping station or height of reservoir
hydrostatic pressure).

The contribution from the advective (dynamic) momentum flux, proportional to velocity squared, can
be very important for high-speed flow. (E.g. case of fire hose: ρ = 103kg m−3; U = 10 m s−1; A =
0.8× 10−2m2 (hose diameter 10 cm) ⇒ 800 N force, or ' 80 kg wt.

Pressure change at an abrupt change in pipe diameter

If we make plausible assumptions based on the behaviour observed in experiments, then we can again
apply the momentum integral to get a useful answer very simply. The observed behaviour is as follows.

Immediately downstream of the junction, there is a complicated eddying behaviour. Ultimately the flow
reattaches to the boundary and there is an approximately uniform flow far downstream.

In the ‘corner’ regions just downstream of the junction, the flow is relatively weak. Therefore there cannot
be large pressure gradients across those regions. We assume that pressure gradients across the pipe can
be neglected — that just downstream of the junction the pressure is relatively uniform across the pipe,
and that it takes approximately the same value, p1 say, as in the uniform flow upstream of the junction.

6



The pressure far downstream, p2 say, will however differ from p1. This is because a flow of the assumed
form has to decelerate.

Apply momentum integral to the entire volume shown in the sketch above, between upstream and down-
stream cross-sections with areas A1 and A2(> A1), taking component along the pipe (direction x̂ say) and
assuming steady, uniform flow at each cross-section. Component along pipe gives

x̂ .

∫
{ρ (u.n) u + pn} dS = 0 .

There is no contribution to the integral from the curved surface since that surface is an impermeable
boundary where u.n = 0. So, remembering the contribution p1(A2 − A1) from the ‘shoulder’,

A1ρU
2
1 + A2p1 = A2ρU

2
2 + A2p2 .

Mass conservation implies that A1U1 = A2U2. Hence

p1 − p2 = ρ

(
U2

2 − U2
1

A1

A2

)
= ρU2

1

(
A2

1

A2
2

− A1

A2

)
< 0 .

The pressure p increases from upstream to downstream.

This flow model has an interesting property: even though we said nothing about friction or viscosity, the
rate of energy input into the volume shown has a well-determined positive value. The eddying flow must
be dissipating energy at a significant rate, no matter how small the fluid viscosity! We may calculate
the rate of rate of energy input as {(pressure force) × (velocity)} + (net rate at which kinetic energy is
carried into the volume shown); this follows from the energy integral in Sheet I Q9. The kinetic energy
per unit mass is 1

2
U2 for motion with velocity U . The rate at which mass enters and leaves the volume is

ρU1A1 = ρU2A2. So the net energy input rate is

p1U1A1 − p2U2A2 + (ρU1A1)(1
2
U2

1 )− (ρU2A2)(1
2
U2

2 )

= ρU2
1

(
A2

1

A2
2

− A1

A2

)
U1A1 + 1

2
ρU3

1A1

(
1− A2

1

A2
2

)
[ p terms sum to (p1 − p2)U1A1 ]

= 1
2
ρU3

1A1

(
1− A1

A2

)2

> 0 .

Energy is being lost at this rate, in the eddying region near the junction. (If the energy input rate had
come out negative, then we’d have had to conclude that the flow model had something grossly wrong with
it — that we had made a grossly inaccurate or false modelling assumption.)

§2.4 Bernoulli’s (streamline) theorem for steady flows with potential forces
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We first derive a relevant vector identity:

(u.∇)ui = uj

{
∂ui
∂xj
− ∂uj
∂xi

}
+ uj

∂uj
∂xi

= −ujεijk(∇× u)k +
∂

∂xi
(1

2
ujuj)

i.e.

(u.∇)u = (∇× u)× u + ∇(1
2
|u|2)

The vector ∇× u, = ωωω say, has special significance and is called the vorticity — see below.

Starting with the Euler equation
∂u

∂t
+ (u.∇)u = −1

ρ
∇p+ F

we assume that the flow is steady, so ∂u/∂t = 0, and that the body force F per unit mass is conservative.
Therefore ∃ scalar field Φ (e.g. gravitational potential) such that F = −∇Φ . The Euler equation (with
ρ constant, and using the notation ωωω = ∇× u) implies that

0 = ωωω × u + ∇(1
2
|u|2 +

p

ρ
+ Φ) = ωωω × u + ∇H, say.(∗)

Notice that the quantity H = 1
2
|u|2 +

p

ρ
+ Φ has dimensions of energy per unit mass.

*With incompressible flow and a steady pressure field, the field p/ρ can be looked on mathematically as if it were a potential
energy per unit mass; but this analogy should not be pushed too far. For instance, if the potential Φ represents gravity
under everyday conditions then we can regard the function Φ as given beforehand, but not the function p/ρ, which depends
on the flow.*

Now take the scalar product of the equation (∗) with u or ωωω.

(u.∇)H = 0, i.e. H constant along streamlines Bernoulli’s (streamline) theorem

(ωωω.∇)H = 0, i.e. H constant along vortex lines, i.e. along integral curves of ωωω(x).

Vortex lines are curves tangent to the vector field ωωω(x). Vortex lines are to ωωω(x) as streamlines are to u(x).

Notice that H constant implies that p is low when |u| is high, and that p is high when |u| is low. E.g.,
along streamlines:
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§2.5 Applications of Bernoulli’s theorem

(1) Venturi meter:

measures flow rate A1, p1, U1 A2, p2, U2

(gentle contraction; uniform tubing upstream and downstream)

so Bernoulli applies if flow is smooth and effectively inviscid — friction negligible:

p1

ρ
+ 1

2
U2

1 =
p2

ρ
+ 1

2
U2

2 (Bernoulli)

A1U1 = A2U2 (mass conservation)

⇒ p1 − p2 = 1
2
ρU2

1

(
A2

1

A2
2

− 1

)
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Use p1 − patm = ρgh1 , p2 − patm = ρgh2
balancing weight of (stagnant) water + atmospheric

pressure) in the thin vertical (manometer) tubes

⇒ U2
1 =

2g(h1 − h2)

(A2
1/A

2
2 − 1)

(2) 2-D water jet incident on oblique plane:

Apply Bernoulli to free-surface streamline:

p

ρ
+ 1

2
|u|2 = constant ; p = patm ⇒ 1

2
|u|2 = constant
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so, far from the point O, the flow speed V = |u| is uniform.

Mass conservation: ρV a = ρV a1 + ρV a2

momentum flux ‖ plate: ρaV 2 cos β = ρa2V
2 − ρa1V

2 (all per unit distance into the paper)

⇒ a2 = 1
2
(1 + cos β)a , a1 = 1

2
(1− cos β)a (Note, a1 can’t be zero even for β � π/2 !)

momentum flux ⊥ plate: = ρaV 2 sin β = force on plate (neglecting friction as always)

*If the plate is freely pivoted about the point O, precisely aligned with the axis of the oncoming jet, then the plate feels
a torque or couple that tends to rotate it until it is ⊥ jet, e.g. anticlockwise if β < π/2 as shown. Consider the fluid’s
angular momentum balance: sum of torques about O (moments about O) of total momentum fluxes, including those due to
pressures near O, must be zero. So torque by fluid on plate = torque on fluid by (advective) momentum fluxes (which act
like pressures, as we saw earlier, hence uniformly over the width of each jet in this model). The far section (a2) evidently
dominates over the near section (a1), having both a greater momentum flux (∝ a2V

2) and a greater moment arm about O
(∝ a2). Integrating, we get total torque = 1

2ρ(a2
2 − a2

1)V 2 (per unit distance).*

Other applications: Barges ground in Canals
Other applications Refuelling ships collide

Barges ground in canals
Aerofoil lift:

E.g. these two streamlines have the
same H values far ahead of the aircraft

Bernoulli party tricks:

Lifting a card by blowing downward
(cf barge/ship examples):
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pingpong ball on an upward jet (cf aerofoil example):

Bernoulli helps understand stability to sideways displacement. The flow past the ball is faster on the side
nearest the pipe axis.

§2.6 Vorticity

Definition: vorticity ωωω = ∇× u local ‘spin’, in a generalized sense

(kth cpt εklm
∂um
∂xl

) ∝ angular momentum of a spherical fluid parcel

about its centre

To see this, notice how the velocity field varies locally, according to the first term of a Taylor expansion
about a given point x0:

u(x, t) ' u(x0, t) + [(x− x0).∇u]|x=x0︸ ︷︷ ︸
linear variation specified by the tensor ∇u

+O(|x− x0|2)
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∂uj
∂xi

= 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸

symmetric, trace-free if ∇.u=0

+ 1
2
εijkωk︸ ︷︷ ︸

rotation with angular velocity 1
2ωωω

The first term represents a flow pattern known as pure strain:

We shall need another vector identity:

∇× (ωωω × u|i = εijk
∂

∂xj
(εklmωlum)

= (δilδmjm − δimδjl)
∂

∂xj
(ωlum)

=
∂

∂xj
(ωiuj)−

∂

∂xj
(ωjui)

=
{

(u.∇)ωωω + ωωω(∇.u)− (ωωω.∇)u− u(∇. ωωω)
}∣∣
i
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note mass conservation ⇒ ∇.u = 0
(incompressible as always),
and ∇.ωωω = 0 identically (because div curl = 0)

Hence, by taking the curl of the Euler equation in the form Du/Dt = −ρ−1(∇p− ρF) , and remembering
that (u.∇)u = ωωω × u +∇(1

2
|u|2) (already used in deriving Bernoulli), we see that

∂ωωω

∂t
+ (u.∇)ωωω = (ωωω.∇)u +∇× F

Assume F conservative; ⇒ F = ∇Φ for some function Φ, ⇒ ∇× F = 0. Then

Dωωω

Dt
= (ωωω.∇)u

(vorticity equation for frictionless, incompressible flow, conservative F), using D/Dt = ∂/∂t+ (u.∇).

Watching a given fluid particle/parcel we see its ωωω value changing at the rate (ωωω.∇)u. Déjà vu??? Recall

equation for a material line element:
Dδl

Dt
= (δl.∇)u . It’s the same equation! (with δl substituted for ωωω).

(Again, strictly speaking, we are regarding δl as a field, of infinitesimal line elements; but all that matters
is that D/Dt is the time derivative following a single material element.) So: Vortex line elements move as
if they were material line elements; vortex lines move as if they were material lines. Or, more succinctly,
‘vortex lines move with the fluid’.

Because the velocity gradient tensor ∇u does not usually vanish, material line elements are usually
stretched and/or rotated as they are carried along in the flow. This follows from (a) the smallness of
δl and (b) the Taylor expansion (mid. p. 18) showing how the velocity field varies locally. To illustrate
this, take the same simple example x0 = 0, u(x0, t) = 0, u = (αx,−αy, 0), α > 0:

This line
element will
stretch:
(δl.∇)u =
(α, 0, 0) |δl|, so
δl ∝ (eαt, 0, 0).

This line
element will
shrink:
(δl.∇)u =
(0,−α, 0) |δl|,
so
δl ∝ (0, e−αt, 0).

This line
element
δl = (δl1, δl2, 0)
will rotate
clock-
wise while

stretching. Its
behaviour is
given by δl ∝
(δl1e

αt, δl2e
−αt, 0).

14



Pure-strain flows such as this have no vorticity (1
2
εijkωk term zero in the Taylor expansion (mid. p. 18));

but line elements in more general flows still stretch or shrink and/or rotate.

Then, because the vorticity and line-element equations are the same, as already remarked, vortex lines
also change (in this frictionless, incompressible model with conservative F) just as if they, too, were being
stretched and rotated. As a reminder of this picture we often say, for brevity, that ‘vorticity changes by
the stretching and rotation (or twisting, or tilting) of vortex lines’.

An important special case in which the pure-strain and vortical terms in the Taylor expansion are both
nonzero is that of pure stretching of vortex lines in axisymmetric flow. Taking the z axis along the
symmetry axis, consider a pure-strain velocity field of the form ustrain = (−βx,−βy, 2βz) (β = const.,
> 0) to which is added another velocity field whose vorticity is nonzero but parallel to the z axis, and
given by a (smooth) function uvort = Ω(r, t)(−y, x, 0), where r = (x2 + y2)1/2, such that Ω(0, t) 6= 0.

[Exercise: show that u = ustrain + uvort has vorticity ωωω =

(
0, 0,

1

r

∂

∂r

(
r2Ω
))

, →
(
0, 0, 2Ω(0, t)

)
as r → 0.]

In this situation (with x0 = 0, u(x0, t) = 0 as before), material line elements parallel to the z axis
undergo pure stretching. Imagine a small material cylinder of length δl and circular cross-sectional area
δA, surrounding a material line element on the z axis. As the line element and cylinder are stretched, the
cylinder’s cross-section remains circular, by axisymmetry. Both the mass and the angular momentum of
the cylinder are invariant, again by axisymmetry (pressure force on cylinder surface points toward axis, so
has zero moment):

Angular velocity Ω of cylinder = Ω(0, t);

vorticity ω = 2Ω(0, t);

Mass conservation ⇒ δl δA invariant;

Angular momentum conservation ⇒ ω δA invariant

(because angular momentum ∝ mass × angular velocity × (radius of gyration)2, and (radius of gyration)2

∝ cross-sectional area, by axisymmetry).

Therefore

ω ∝ δl ; i.e., in the following diagrams,
ω2

ω1

=
δl2
δl1

:

At time t = t1 : At time t = t2 > t1 :
ω1δl1 ω2δl1
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We say that ‘stretching amplfies vorticity’. It is also called the ‘ballerina effect’. While spinning on your
toes, you pull your arms in and spin faster. (Figure skaters do it most spectacularly.)

This is essentially how the familiar ‘bathtub vortex’ works:

*Atmospheric cyclones and tornadoes likewise depend, in part, on the amplification of vorticity by vertical stretching. The
contribution to the vorticity from the Earth’s rotation is usually significant in getting such processes started (unlike the
bathtub case as described in newspapers and dinnertable conversations!).*

§2.7 Kelvin’s circulation theorem and the persistence of irrotationality

Circulation is the integral counterpart of vorticity; Kelvin’s circulation theorem (sometimes just called
‘the circulation theorem’) is the integral counterpart of the vorticity equation. Define the circulation, C,
around a closed curve Γ by

C =

∮
Γ

u. dl =

∫
S

ωωω.n dS where S spans Γ
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(Stokes’ theorem). Let Γ be a material curve (this is crucial):

dC
dt

=

∮
Γ

{
Du

Dt
.dl + u.

D

Dt
(dl)

}
(Here D/Dt means, as before, the material

rate of change of the infinitesimal line element dl, previously denoted by δl)

=

∮
Γ

{
−∇p

ρ
· dl + F.dl + u.(dl.∇)u

}
= dl.∇(1

2
|u|2)

=

∮
Γ

dl.

{
−∇p

ρ
−∇Φ +∇(1

2
|u|2)

}
(again assume F = −∇Φ,

conservative)

=

∮
Γ

d

(
−p
ρ
− Φ + 1

2
|u|2
)

= 0(because closed curve).

This is Kelvin’s circulation theorem. In words: for inviscid (frictionless) fluid of uniform density with
conservative forces, the circulation around a closed material curve remains constant.

(Note consistency with invariance of ω δA in the simple vortex-stretching example just considered.)

Alternative derivation, following Acheson, but correcting a slight obscurity, tacitness about the term involving 1
2 |u|

2:
Parametrize Γ as the moving set of points Γ =

{
x
∣∣ x = X(a, t), 0 ≤ a < 1

}
, s.t. a = const. ⇒ x = X(a, t) fol-

lows a material particle; thus, in particular, ∂X(a, t)/∂t = u(X(a, t), t). Then C =
∫ 1

0
u(X(a, t), t).(∂X(a, t)/∂a) da. Because

da is invariant as the fluid moves, we have dC/dt =
∫ 1

0

∂

∂t

{
u(X(a, t), t).(∂X(a, t)/∂a)

}
da. The vanishing of this last integral

follows from the standard rules for differentiating products and functions of functions (you should check this!); in particular,
u.∂2X(a, t)/∂a∂t = u.∂u(X(a, t), t)/∂a = ∂( 1

2

∣∣u(X(a, t), t)
∣∣2)/∂a.

*(Notice incidentally that a is a Lagrangian label, albeit a discontinuous one.)*

Definition: irrotational flow, or irrotational fluid motion ⇔ ωωω = 0 everywhere.
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Corollary of the circulation theorem: irrotational flow remains irrotational.

Proof for smooth ωωω(x, t): Initially irrotational ⇒ circulation around all (arbitrary) material circuits
initially zero ⇒ circulation around all material circuits remains zero ⇒ flow remains irrotational.

Alternative proof, by reductio ad absurdum, again for smooth ωωω(x, t): Suppose ωωω 6= 0 at some point
x0. Then one can find a small material curve Γ, encircling the vortex line through x0, whose circulation
C =

∮
Γ

u. dl =
∫
S
ωωω.n dS 6= 0. *(It is enough for ωωω to be a continuous function of x.)* The non-vanishing of

C is a contradiction, because for the Γ in question C was zero initially (regardless of where the fluid particles
making up Γ were located initially, because initially ωωω = 0 everywhere). So the original supposition is
wrong.

*This focuses attention on how a real fluid can acquire vorticity — viscous (frictional) forces can allow vorticity to escape
from boundaries into interior; & see p. 24.* NB: Fluid initially at rest is an important special case.

Digression for light relief: ARCHIMEDES’ PRINCIPLE

Archimedes’ principle states that there is an upward force on a body immersed in fluid equal to the weight
of the fluid displaced by the body. It follows that a floating body, for which the upward force balances
the weight, displaces an amount of fluid whose weight is equal the weight of the body itself. We can
demonstrate this simply as follows; it is a corollary of the momentum integral of §2.

Consider a body of volume V floating in fluid of constant density ρ, with a volume Vimmersed below the
level of the free surface, as shown in the figure below.

The force Fbody on the body is given by the momentum integral:

Fbody = −
∫
S

pndS = −
∫
S

(p− patm)ndS
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where p is the pressure, S is the surface bounding V , and n is the outward normal to V ; patm is the
atmospheric pressure. The second equality follows because patm is constant and the integral of the normal
vector n over the surface of a closed body is zero, by the generalized divergence theorem (replace n in
surface integral by ∇ in volume integral), as used earlier.

The pressure distribution in the fluid may be deduced by considering the Euler momentum equation. The
fluid is at rest, so this reduces simply to

−1

ρ
∇p+ gẑ = 0

where g is the gravitational acceleration and ẑ is the unit vector in the (downward) vertical direction.
This is often referred to as hydrostatic balance. It follows, setting p = patm on z = 0, that (for z > 0) the
hydrostatic pressure distribution is given by

p = patm + ρgz.

Substituting into the pressure integral, and then noting that there is no contribution from z < 0, it follows
that

Fbody = −
∫
Simmersed

ρgzndS

where Simmersed is the boundary of Vimmersed. Then, again using the (generalized) divergence theorem, we
have that

Fbody = −
∫
Vimmersed

ρgẑdV = −ρgVimmersedẑ .

The expression on the right-hand side is simply minus the weight of fluid that would have occupied Vimmersed

in the absence of the body.

The above holds for a (resting) body totally immersed in fluid. Then, of course, V = Vimmersed.
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