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Abstract. The advection schemes used in numerical models of chemistry and 
transport •t fixed resolution must unavoidably c•use the models to misrepresent 
the transport in some w•y. This c•n include f•ilure to establish or preserve the 
functional relations between long-lived chemical tracers that •re often observed in 
the •tmosphere. We show that linear functionM relations will be preserved exactly 
by purely linear •dvection schemes •nd Mso, less obviously, by certain "semi-linear" 
flux-limited schemes despite the unavoidable nonline•rity introduced by the flux 
limiter. In practice, semi-linear flux-limited schemes will Mso preserve nonlinear 
functional relations better th•n linear centered difference or spectral schemes 
that suffer from dispersion errors. The re•son is that the dispersion errors le•d to 
spurious oscillations of the mixing r•tio field in physical sp•ce, •rtifici•lly expanding 
the r•nge of mixing r•tios in •ny neighborhood, •nd hence to • spurious scatter 
in the relation between •ny two mixing ratio fields that •re nonlinearly related to 
begin with. Examples of correlations not only preserved, but established, by re•l 
•nd model transport •re discussed in this light, including the c•se of str•tospheric 
transport on timescales of years, for which we discuss •nd extend e•rlier results on 
the w•ys in which tracer functional relations c•n •rise, for sufficiently long-lived 
tracers, purely from transport. The stmtospheric results •re shown not to depend 
on the qu•si-horizontM Ficki•n eddy diffusivity •ssumption used in the e•rlier 
work. The re•son is that, whenever the quasi-horizontal (isentropic) mixing is f•st 
enough--even if it is non-Ficki•n •s expected in re•l str•tospheric surf zones--the 
chaotic p•rt of the quasi-vertical, cross-isentropic transport h•s the n•ture of • 
r•ndom w•lk with sm•ll verticM steps. 

1. Introduction 

There has been much interest in the striking correl- 
ations, verging on functional relations, observed in the 
lower stratosphere between the mixing ratios of certain 
long-lived tracer species, or families of species, such as 
nitrous oxide (N20) and "total odd nitrogen" (NOv) 
[e.g., Fahey et al., 1990]. These correlations put ob- 
servational constraints on attempts to model the atmo- 
sphere, and in particular they have emphasized short- 
comings in advection schemes used for gas-phase trans- 
port in numerical models [e.g., Allen et al., 1991]. This 
in turn has directed attention to fundamental differ- 

ences between chemical transport in the real atmo- 
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sphere and chemical transport in numerical models. All 
these issues have acquired new urgency in view of, for 
instance, recent controversies about observed correla- 
tions between N20 and ozone (03) in the Arctic polar 
vortex. There is concern about whether the correla- 

tions are adequately represented in numerical models 
and whether departures from a simple functional rela- 
tion between the species may or may not be interpreted 
as evidence for anomalous chemistry [e.g., ProJfitt et 
al., 1990, 1992; Mcintyre, 1992; Plumb and Ko, 1992 
(hereafter PK)]. 

If one chemical species is a source for another, if two 
species react together to destroy each other, or if two 
species are created together from other species, then the 
mixing ratios • and X of the two species may be func- 
tionally related, with the function linear in the sense 
that 

x = A•b + B (1) 
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where A and B are constants. Moreover, such a relation 
is preserved by any mixing process. These considera- 
tions may have relevance, 'for instance, to the observed 
N20, NO v relation [Fahel! et al., 1990]. However, as was 
recognized by Fahc•q et al. and examined in detail by 
PK, functional relations can arise for a different reason. 
Even when the chemistry is less simple, transport by 
itself can give rise to functional relations between spe- 
cies. This is especially liable to happen when chemical 
•imescales arc long in comparison with transport time- 
scales. More generally, if two gas-phase species have 
common sources and sinks, and if the transport is the 
same for both species---these notions will be made pre- 
cise below--then a functional relation can arise essen- 

tially because the transport shapes the ? and • fields 
in the same way, making their isopleths coincide [Plumb 
and McCona!o9ue, 1988 (hereafter PM)]. 

This paper examines from a fimdamental viewpoint 
the q•est;i. ons th•s raised First, we briefly recall why, 
for the real atmosphere, it often makes sense to talk 
about "the" transport, that is, a unique transport, 
the same for different gas-phase species. Second, we 
point out that no such uniqueness property holds, in 
any gcn•'rM sense, for numerical models at finite res- 
olu•ic•, 1,etause of the nal, ure of practical numerical 
a.clvc•'l•c•n_ schemcs• 'Fhird. we show that,, nevertheless, 
certai• fl•x.-li•iled advection schemes that are "semi- 

preserve preexisting linear fimctional relations between 
species, and will usually preserve preexisting nonlin- 
ear h•nctional rela. tions more accurately than do linear 
centered difference schemes with or without negative- 
xalue filling. Fourth, we reexamine the results of PM 
and PK concerning the ability of transport to estab- 
lish, as well as to preserve, fi•nctional relations between 
species. PK's results on vertical diffusive behavior in 
tl•<. slratosphere and their predecessors in Mahlman st 
a/. [1986] and Holton [1986] are generalized so as not 
lr• {lepend (o) on steadiness and zonal symmetry of the 

l•,•ri:zonJal colely cli•usivity. This generalization, equa- 
l ion (40) below. is important if only because the quasi- 
horizontal eddy diffusivity assumption is not well justi- 
fied in, for example, real stratospheric surf zones. Fi2h 
and finally, we discuss to what extent these results are 
likely to remain valid in numerical models using Wpical 
advection schemes, and [o what extent. we can expect 
numerical models, as distinct from the real atmosphere, 
to preserve preexisting functional relations between spe- 
cies or to establish such relations. 

While fSlcusing on fi•ndanmntals we nevertheless re- 
cognizc that practical models with limited resolution 
may need to parameterize subgrid chemistry, and that 
such parameterizations will tend to blur the distinc- 
tion between transport and chemistry, as with so-called 
"chemical eddy" effects. However, for the sake of con- 
ceptual clarity it is still worth maintaining, in principle, 
the dislin,;ti•m between •ra.nspor[ and chemistry, and 

regarding their subgrid interactions as a separate para- 
meterization problem distinct from the problems dis- 
cussed here. The distinction between transport and 
chemistry is important, if only because it implies the 
possibility of thought experiments in which we keep the 
transport unchanged while changing the chemistry, and 
vice versa. 

2. Linearity and Other Basic Properties 
of Real Gas-Phase Transport 

For well-known reasons, gas-phase material transport 
in the real atmosphere is almost exactly independent of 
the thing transported, so that one can speak of "the" 
transport, the same for all gas-phase species. The only 
differences come from the finest, Kolmogorov-scale de- 
tails of small-scale turbulent mixing, which depend on 
molecular diffusivity coefficients; but such differences 
are many orders of magnitude smaller than are likely to 
be significant in the present state of knowledge, and we 
disregard them from the outset. 

The species-independence of gas-phase transport, to- 
gether with the additivity property of conservable or 
transportable quantities, implies a certain "linearity 
property," namely, that the net effect of transport is 
representable mathematically as a linear operation on 
the mixing ratio fields •4,, X, ... of gas-phase species. 
This linear operation is independent of the mixing ratio 
fields and dependent only on the air motion, including 
small-scale turbulent mixing. It can be expressed in 
various ways, of which the three best known take the 
form, in the absence of chemical sources and sinks, 

0 

at - -v. 

: (3) Ot 

x(x, t) - f x'; t, t')x(x', t') ' (t >_ t') 
(4) 

[e.g., Pasquill and Smith, 1983; Ficdlcr, 1984; Stull, 
1984; PM]. In (2) and (4), p is the air density, and 
is the total, advective plus nonadvective, flux or trans- 
port of the species whose mixing ratio is X:; x is position 
and t is time. In (3), L(X:) is the linear operator 

- + - (5) 

The linearity property says that the flux vector F(.), 
hence its divergence, hence L(.), depend linearly on 
their arguments, which implies that 

r(A½ + •x) - At(t) + •r(x) (•) 

for any constants A and B, and that 

•(A½ + SX) - A •(•)+ S•(X) (7) 

Also, we normally assume that L(A) - 0, i.e., that 
transport cannot change any •: field that is spatially 
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uniform. In (4) the Green's function or redistribution 
function R(x,x•;t, t•), defined for t >_ t •, describes the 
transport taking place between times t • and t; the re- 
striction t _> t • is needed, in general, because of the 
irreversibility of mixing. The linearity property says 
that R is independent of X. 

The linearity property reminds us why the notion of 
"eddy diffusivity" is usually ill defined for the real at- 
mosphere. Although, for a single tracer species whose 
mixing ratio is X, one can define a local, Fickian scalar 
or tensor eddy diffusivity K by forcing it to satisfy 

v(x) - p,x- (8) 

such a K will usually depend on the X field. It may do 
so very strongly, •s is well illustrated by the examples 
of linear passive tracer transport given by Fiedler and 
Moeng [198S]. In other words, linear transport c•n give 
nonlinear K, and different K for different species. This 
can happen--even in the absence of further complica- 
tions, such as unresolved linear or nonlinear "chemical 
eddy" effects--because the statistically nonlocM charac- 
ter of reM turbulent transport m•y conflict with the •s- 
sumed local character of Ficki•n diffusion. In • co•rse- 

grain, averaged description, which we must resort to 
unless we use space and time resolutions comparable 
to the Kolmogorov scales, an impracticable proposi- 
tion, the averaged transport is linear but often non- 
Fickian--and statistically nonlocal--as with a random 
walk whose step size is not small in comparison with 
spatial scales of the averaged tracer fields. Real stra- 
tospheric surf zones, with their large horizontal eddy 
sizes, provide a conspicuous example. In (4) the redis- 
tribution function R(x, x•; t, t •) makes this nonlocalness 
explicit; Stull [1984] calls it "transilience." 

As regards the advective contribution to F(X:) namely 
pux:, it might be thought that the linearity property 
expressed by (2), (3), or (4)could be straightforwardly 
represented in numerical models simply by using a lin- 
ear advection scheme. But such schemes lead to well- 

known difficulties. For instance, linear schemes based 
on centered differences or on spectral transforms can 
generate spurious oscillations in the advected quantity, 
and even negative mixing ratios. Negative values are 
then "filled" in some way (set to zero or to a small pos- 
itive value) and the tracer field is adjusted elsewhere 
to conserve the total mass of tracer substance. The 

scheme as a whole, advection plus filling, is nonlinear. 
Again, flux-limited advection schemes, which are cur- 
rently fashionable because they can be designed to over- 
come the more conspicuous problems such as spurious 
production of negatives, are also nonlinear, intrinsic- 
ally and unavoidably. In either case the linearity prop- 
erty is violated: the transport operator corresponding 
to the numerical scheme is not independent of the thing 
transported. The only linear schemes that do not re- 
quire negative-value filling, namely, first-order upwind 
schemes [Godunov, 1959], do have the linearity property 
but are too diffusive for practical purposes. 

In summary, then, no real transport situation can be 
perfectly represented in a practicable numerical model 
with fixed spatial resolution relying on an Eulerian ad- 
vection scheme; one must have at least one of the fol- 
lowing three problems: (a) spurious oscillatory beha- 
vior, including negative mixing ratios, as with linear 
centered difference schemes, (b) excessive linear diffu- 
sion, as with linear first-order upwind schemes, or (c) ar- 
tificial nonlinearity, in the sense of artificial dependence 
of the transport on the thing transported, as with flux- 
limited schemes and, equally, linear schemes followed 
by negative-value filling. Because both problem (a) and 
problem (b) are intolerable in practice, we are left with 
problem (c), hence violation of the fundamental linear- 
ity property. One must therefore ask to what extent 
a flux-limited or any other nonlinear advection scheme 
will disrupt functional relations between tracer species 
or exhibit other departures from real atmospheric be- 
havior, making model results difficult to interpret and 
difficult to compare with observations. 

What other properties of real gas-phase transport 
need consideration? The following list of properties, 
some of which have been mentioned already, could be 
taken to be the most fundamental: 1, the transport op- 
erator is linear, 2, the total mass of tracer substance is 
conserved, 3, absolute mixing ratio extrema are never 
amplified (absolute maxima are never increased nor ab- 
solute minima decreased), 4, a spatially homogeneous 
mixing ratio field always remains spatially homogen- 
eous, with the same mixing ratio value, and 5, negative 
mixing ratios are never produced. Property 3 is some- 
times called the "shape-preserving" property. If, in ad- 
dition, the transport is purely advective then we have 
another property, 6, all functional relations between dif- 
ferent advected species are preserved. 

Not all these properties are logically independent. 
For instance, property 3 implies properties 4 and 5 as 
special cases. Furthermore, properties 1, 4, and 5 to- 
gether imply property 3. This will be shown shortly. 
Note also that for any transport operator, real or nu- 
merical, that has property 3 and sees only a neighbor- 
hood of limited size--as with, for instance, a shape- 
preserving finite-difference scheme acting over a single 
timestep--property 3 will apply also to relative extrema 
within the neighborhood, because such a transport op- 
erator cannot distinguish relative extrema within the 
neighborhood from absolute extrema over the whole do- 
main. This fact will be made use of in section 4.2. 

For real gas-phase transport, properties 1-6 can be 
expressed via the redistribution function /r/(x, x•;t, t•). 
Property I holds whenever/r/(x, x•;t, t •) is independent 
of X, as pointed out below equation (4). Property 2 will 
hold if and only if 

R(x,x•'t t •)p(x t) dax- 1 for all x • t •<t (9) 
(multiply equation (4) by p(x, t), integrate with respect 
to x, and require the result to equal the given mass M 
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for all p(x', t')X:(x', t') having f p(x', t')X:(x', t')dax ' = 
M' compare equation (9)of Ficdlcr [1984] and (4)of 
Stull [1984]). It is straightforward to make an advection 
scheme satisfy property 2, by basing it on the flux form, 
cf. equation (2), of the differential equation describing 
advection. Property 4 will hold if and only if 

it(x, x';t, t') p(x', t') d3x ' - I for all x, t >_ t' (10) 
(immediately from equation (4); compare equation (7) 
of Fiedler [1984] and (3) of Stull [1984]). When based on 
the advective form, cf. equation (3), of the tracer advec- 
tion equation, most schemes trivially satisfy property 4. 
However, when the flux form is used, a certain cancel- 
lation is required between contributions to the flux di- 
vergence, consistent with mass continuity. Property 5 
will hold if and only if 

R(x,x';t,t') > 0 for all x, x', t > t' (11) 

Many simple numerical transport schemes violate prop- 
erty 5. Property 3 can now be seen to be implied, as 
already asserted, whenever properties 1, 4, and 5 all 
hod. For, if X:m•x(t') > 0 and Xmin(t') •_ 0 are re- 
spectively the absolute maximum and minimum values 
of X at time t •, then to deduce property 3 we need only 
show that if X: evolves via (4) then X:(x,t) <_ X:m•x(t') 
and X(x, t) >_ Xmn (t'), for any t and t' such that t >_ t'. 
But if X: evolves via (4) then so also do X:(•)(x,t) - 
Xmx(t') -- X(x, t) and X(2)(x, t) - X(x,t)- Xmin(t'), as 
can be verified by substitution into the right of (4) fol- 
lowed by of ') >_ 0 
any t', (4) and (11) together imply that X:(•)(x,t) _>. 0 
for any' t > t', similarly X:(2)(x, t) > 0, and property 3 
follows. 

Property 3 does not, however, follow from proper- 
ties 4 and 5 alone, and so it needs separate consider- 
ation for any practical, nonlinear, numerical transport 
scheme. Though property 3 is usually insisted on, we 
remark that cases are conceivable in which it would not 

be appropriate. A coarse-grain, averaged picture of real 
turbulent transport could violate property 3, and 4 also. 
Coarse-grain X: fields may correspond to finer-grain X: 
fields having, say, larger maxima that are hidden by 
spatial or ensemble averaging. These could amplify a 
maximum in the coarse-grain X: field if unresolved fluid 
dynamical processes like subgrid-scale vortex merging 
take place. However, for conceptual clarity it is prob- 
ably best to parameterize such effects separately and 
explicitly, if they are thought to be important, while 
retaining property 3 in the advection scheme. Many 
advection schemes that satisfy property 3 have been 
developed, based on the techniques of "flux-corrected 
transport" [e.g., Boris and Book, 1972; Zalesak, 1979] 
or of "flux limiters" [e.g., Sweby, 1985; Leonard, 1991; 
Thuburn, 1996], again at the cost of violating the lin- 
earity property. 

That linear transport preserves linear functional re- 
lations is obvious from equation (4), by substituting 
(1) into the right hand side of (4). However, arbitrary 
functional relations between species will be preserved 
(property 6) only if R corresponds to pure advection, 

1 
ß - •Sa(x '- X(x tt')) (12) U(x,x',t,t') p(x,,t,) ' ' 

for some single-valued function X(x, t, t'), the Lagrang- 
ian inverse map giving the departure point for a ma- 
terial particle subsequently at x, where 53 is the three- 
dimensional Dirac delta function and p(x', t') is the air 
density at the departure point. Diffusion is not allowed 
here, even when the diffusion coefficient is the same for 
all species. Any diffusion or other mixing process acting 
on two air parcels having mixing ratio values X; = X;• 
and 2( = 2(2 of one tracer will produce a range of mixing 
ratios along the "mixing line" defined by 

AX•+/•X2 (0<_X<_ 1, /•- l-A) (13) 

and similarly for a second tracer. So if two tracers are 
functionally related, as illustrated by the curve in Fig- 
ure la, then mixing will tend to replace the functional 
relation by a scatter, by linearly interpolating along the 
mixing lines between pairs of points such as A and B 
or A and C. Clear examples of the formation of such 
mixing lines have been observed, for instance, during 
polar vortex breakup [e.g., Waugh et al., 1996]. 

3. Examples of Advection Schemes 
Three one-dimensional advection schemes are con- 

sidered in this paper: (a) a second-order centered dif- 
ference scheme (CD2), (b) a simple flux-limited scheme 
based on second-order differences plus the van Leer 
[1974] limiter (VL2), and (c) a more sophisticated flux- 
limited scheme (UL4) based on fourth-order centered 
differences plus a flux limiter equivalent to Leonard's 
[1991] universal limiter. These three schemes are cur- 
rently available as options for calculating the vertical 
advection terms in the UK Universities Global Atmo- 

spheric Modelling Programme (UGAMP) global circu- 
lation model (the UGCM; see, for example, Slingo et 
al. [1994]). Details are given in Appendix A below. 
Thuburn [1996] shows how the principles involved can 
be extended to more than one dimension and to arbit- 

rary orders of accuracy. 
All three schemes conserve the total mass of tracer 

substance, property 2 of section 2, listed above equa- 
tion (9), and preserve an initially homogeneous mixing 
ratio, property 4. CD2 is typical of advection schemes 
using centered differences in that dispersion errors lead 
to the production of spurious extrema, including neg- 
ative tracer mixing ratios. VL2 and UL4, on the other 
hand, are shape preserving (property 3) and produce 
no spurious extrema. 
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Figure 1. (a) Illustration of how the mixing of two species initially having a simple nonlinear 
functional relation (curved line) in a correlation diagram (•bX diagram), can disrupt that simple 
relation by generating new values along mixing lines, such as the straight lines shown. (b) Points 
A,B,...,E on a correlation diagram representing the relevant grid values of the mixing ratios •b 
and X of two species that initially satisfy a functional relation. The relevant grid values are those 
belonging to the set Sp of grid points seen by a numerical advection scheme, when updating 
mixing ratio values at the grid point P (see text). (The number of grid points of Sp, hence the 
number of points on the correlation diagram, is finite but may differ from the number shown 
schematically.) For a scheme that is shape preserving, property 3 of section 2, the updated 
mixing ratio values • and X at P cannot fall outside the dotted rectangle R(Sp). For a scheme 
that is both semi-linear in the sense of equations (16) and (43), and "monotone" in the sense of 
Hatten [1983], the updated mixing ratio values at P cannot fall outside the boat-shaped polygon 
A,B,...,E, as shown in Appendix B. 

The scheme CD2 is linear (property 1), whereas VL2 
and UL4 are nonlinear. In section 7 we examine whether 

the ability of a numerical model to establish correlations 
between species is affected by the use of these nonlinear 
schemes. The question of whether advection schemes 
preserve preexisting functional relations between differ- 
ent species is addressed in the next two sections. 

4. Preservation of Preexisting 
Functional Relations: Theory 

4.1. Linear Functional Relations 

and Semi-linear Advection Schemes 

Advection schemes based on the flux form of the ad- 

vection equation require the calculation of a mixing 
ratio Xf corresponding to each interface between grid 
boxes. This Xf is then multiplied by the mass flux of 
fluid to give the flux of tracer substance between boxes. 
Generally, Xf is a function of the grid point values, X, 

Xr- N(X) (14) 

such that N(A) = A for any constant field A. Concrete 
examples are given in (44), (49), and (54)below. For 
flux-limited advection schemes, N(X) is nonlinear: for 
two tracer fields with mixing ratios •b and X, 

N(A½ + BX) • A N('½,) + BN(x) (15) 

generally. However, there is a class of flux-limited 
schemes, including VL2 and UL4, that satisfy 

N(A•b + B) - AN(•b) + BN(1) - AN(•b) + B (16) 

for any constants A and B. Schemes with this prop- 
erty will be called, by definition, "semi-linear." An 
alternative but equivalent definition is given in (43) 
below. Being semi-linear in this sense ensures that a 
scheme will preserve a linear functional relation between 
two species, even if the scheme is nonlinear. The fact 
that schemes satisfying (16) preserve linear relations has 
been noted independently by Lin and Rood [1996]. 

Not all flux-limited schemes are semi-linear in this 

sense (nor any scheme with negative-value filling). For 
example, and it is not the only example, Prather [1986] 
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describes an optional limiter for his second-order-mo- 
ments advection scheme. This limiter prevents the pro- 
duction of negative box-average mixing ratios but does 
not prevent overshoots, nor undershoots that do not go 
negative. When such a scheme is applied to two tracer 
species that are linearly related, say with mixing ra- 
tios ½ and X; = 1- '½ in the range (0, 1), then one of 
them could overshoot past 1 whereas the other cannot 
become negative. Then the linear relation is disrupted. 
Lee ½t al. [1997] describe disruption of linear relations 
by this advection scheme and limiter, in simulations of 
transport and chemistry in the winter stratosphere. 

4.2. Nonlinear Functional Relations 

and "Numerical Mixing" 

In Eulerian numerical modeling there is some ambi- 
guity in the idea of preserving a nonlinear functional re- 
lation between species. Consider two tracers with mix- 
ing ratios ½ and ,, the first with mixing ratio ½ - 1 
in part of the domain and ½ - 0 elsewhere, and the 
second with mixing ratio ¾ - 0 where ½ - 1, and 
X - 1 where ½ - 0. When the tracers are advected 
a distance of half a grid box, some new values of the 
mixing ratios, other than 0 and 1, are bound to arise. 
This simple thought experiment illustrates two points. 
First, there may not be a unique functional relation 
implied by the initial tracer distribution' for instance, 
both X - 1 - ½ and • -- 1 - t/, ? hold in this case, and so 
it is not obvious which, if eit. her, should hold at a later 
time. Second, and more important, "numerical mixing" 
is inevitable because of the finite grid resolution [e.g., 
Thubum, 1995]. This means that no practical Eulerian 
advection scheme can exactly preserve arbitrary func- 
tional relations between species' some spurious scatter 
is inevitable. 

The term "numerical mixing" will be kept in quotes-- 
it might be better to call it "numerical spreading"-- 
because it can be very unlike real mixing. For instance, 
a linear scheme like CD2 will artificially expand the 

extrapolated mixing lines, that is, according to formula 
(13) with .X and/• no longer restricted to lie in the range 
(0, 1). Such spreading is grossly different from real mix- 
ing, because some of the tracer is, on the contrary, being 
unmixed. This effect can drastically worsen the spuri- 
ous scatter in a nonlinear functional relation between 

the mixing ratios of two species, as will be illustrated 
below in Figure 3c. 

A shape-preserving scheme like VL2 or UL4, i.e., a 
scheme having property 3 of section 2, listed above 
equation (9), causes "numerical mixing" that is more 
like real mixing in so far as the scheme never expands 
the range of mixing ratio values it sees. This result is 
easily shown as follows. When the scheme is applied 
for one time step to update the mixing ratio value at a 
given grid point P, it sees only the mixing ratio values 
in the grid neighborhood, i.e., only the values at a local 
set of grid points Sp consisting of P and some neighbor- 
ing grid points. It must therefore give the same result 

at P as if the extreme (maximum and minimum) mixing 
ratio values for the set Sp were an absolute maximum 
and an absolute minimum for the whole domain. Prop- 
erty 3 of section 2 therefore implies that the updated 
value at P cannot go outside the range spanned by the 
same maximum and minimum. 

Figure lb illustrates how this result maps into the 
correlation diagram for two tracers with mixing ratio 
½ and X:. The values of (½,X:) at the grid points of 
Sp map into a finite set of points, I(Sp), say, in the 
correlation diagram, shown as the filled circles (heavy 
dots) marked A to E. Regardless of the number of points 
and their configuration, there is always a smallest axis- 
oriented rectangle R(Sp) containing I(Sp). In the case 
of Figure lb, R(Sp) is the dotted rectangle. The shape- 
preserving property implies that "numerical mixing" 
cannot, at the grid point P, create a new value that 
falls outside R(Sp). The envelope of the set of all such 
rectangles R(Sp), for all grid points P, therefore limits 
the extent to which a shape-preserving scheme can blur 
or shift a nonlinear functional relation. However, the 
result still need not resemble the mixing line situation 
of Figure la. Figure 4c below will provide an example in 
which it clearly does not. In that example the cumulat- 
ive effect of a shape-preserving scheme, VL2• is mainly 
a sideways shift to the convex side of a preexisting func- 
tional relation. This is very unlike real mixing, which, 
as suggested in Figure l a, blurs and shifts a nonlinear 
functional relation to its concave side only. 

If we wish to guarantee that "numerical mixing" re- 
sembles real mixing in this last respect, then it seems 
that we may have to make the scheme satisfy a con- 
dition far more restrictive than the shape-preserving 
property, and to sacrifice accuracy in other respects. 
The only condition we know of that guarantees 
merical mixing" on the concave side only says that the 
scheme must be both semi-linear in the sense of equa- 
tion (16) and "monotone" in the sense of Harte• [1983]. 
This last condition is briefly discussed in Appendix B, 
where the monotone property is defined, and shown to 
imply both the shape-preserving property and "numer- 
ical mixing" to the concave side only. More precisely, 
the updated mixing ratio values (W, X•) at the grid point 
P cannot fall outside the convex hull of the set I(Sp). 
This is the smallest convex polygon enclosing all the 
points of I(Sp); in the example shown in Figure lb it 
is the boat-shaped polygon AB...E, much narrower than 
the rectangle R(Sp). But Hatten shows that monotone 
schemes are restricted to having only first-order accur- 
acy in grid size--a heavy price to pay. A more accurate 
scheme, such as VL2 or UL4, cannot be monotone in 
the required sense. 

5. Preservation of Preexisting 
Functional Relations' Numerical Tests 

5.1. Linear Relations 

The three schemes described in section 3 and Append- 
ix A were tested in some simple one-dimensional experi- 
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ments. Four initial tracer profiles, tPi(i -- 1,..., 4), were 
set up (Figure 2a) and advected by a constant wind 
once around a periodic domain of 48 regularly spaced 
grid points at a Courant number c = 0.2, equation (46) 
below. Then four more tracer profiles Xi (i = 1,..., 4) 
were set up. These are linearly related to the first four 
according to Xi = -0.8•Pi + 0.9. The second set of 
tracers were also advected once around the periodic do- 
main. 

As expected, CD2 produces spurious oscillations and 
negative mixing ratios in the tracer fields, and three 
of the four tracer profiles are badly distorted (Fig- 
ure 3a). VL2 produces no spurious oscillations, though 
there is some flattening of extrema and a tendency to 
steepen some gradients (Figure 4a,b). (This nonlinear, 
antidiffusive steepening is explained in Appendix A2, 
and warns us not to take terminology like "shape pre- 
serving" too literally.) UL4 is arguably better than 
VL2, with a much slighter flattening of extrema in the 
top right and bottom left panels of Figure 5a, for in- 
stance, albeit some small-scale distortions (of the kind 
sometimes called "staircasing"), especially noticeable in 
the bottom right panel of Figure 5a and the top right 
of 5b. These will be relevant in section 7.1. As pre- 
dicted in section 4.1, all three schemes exactly preserve 
the linear relations between the sets of tracers (plots 
not shown). 

5.2. Nonlinear Relations 

Another set of tests was carried out in which the 

second set of tracers was nonlinearly related to the first 

according to Xi - -0.8•p• + 0.9. The initial distribu- 
tions of the second set of tracers and their correlation 

diagrams with the first set are shown in Figures 2b and 
2c. The results of advecting the tracers using the three 
schemes, and the final correlation diagrams, are shown 
in Figures 3, 4, and 5. Again the final tracer profiles 
show that VL2 and UL4 are far superior to CD2 in 
maintaining tracer profiles with sharp changes of gradi- 
ent, UL4 being distinctly better than VL2. 

The correlations for the square wave profile illustrate 
the ambiguity discussed in section 4.2. Initially, there 
are only two points on the correlation diagram, the top 
left panel of Figure 2c, and these do not define any par- 
ticular functional relation. All three schemes generate 
new tracer values that are linearly related, as shown in 
the top left panels of Figures 3c, 4c and 5c. 

The linear scheme CD2 distorts and scatters two of 

the remaining three functional relations (Figure 3c), 
confirming that, as expected, linearity of an advection 
scheme is not enough to ensure the preservation of ar- 
bitrary functional relations. VL2 is better, and UL4 is 
better still with relatively slight scatter. 

In the tests discussed so far, no attempt has been 
made to fill in the negative mixing ratios produced by 
CD2. Such filling is often used in numerical models. 
Figure 6 clearly shows how such filling turns CD2 into 
a nonlinear scheme, CD2F say, which disrupts the linear 
functional relations in the first set of test cases, most 
of all in the case of the step profile. Allen et al. [1991] 
give an example of disruption of functional relations 
by negative-value filling in a three-dimensional chem- 
ical transport model, and avoidance of that disruption 
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Figure 3a. Final distributions of the first set of tracers, %hi, in the experiments to test preserva- 
tion of linear and nonlinear relations using scheme CD2. 
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Figure 3b. Final distributions of the second set of tracers, Xi, in the experiment to test preser- 
vation of nonlinear relations using scheme CD2. 
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Figure 3c. Correlation diagrams showing final correlations between ½i and X:i in the experiment 
to test preservation of nonlinear relations using scheme CD2. 
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Figure 4b. Final distributions of the second set of tracers, Xi, in the experiment to test preser- 
vation of nonlinear relations using scheme VL2. 
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Figure 5a. Final distributions of the first set of tracers, ½i, in the experiments to test preserva- 
tion of linear and nonlinear relations using scheme UL4. 
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Figure 5b. Final distributions of the second set of tracers, Xi, in the experiment to test preser- 
vation of nonlinear relations using scheme UL4. 
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Figure 5c. Correlation diagrams showing final correlations between ;hi and Xi in the experiment 
to test preservation of nonlinear relations using scheme UL4. 
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by changing to a flux-limited advection scheme. The 
nonlinear relations in the second set of test cases that 

are already strongly disrupted by CD2 without filling 
(Figure 3c, top right and lower right) suffer little addi- 
tional effect, from filling (not shown). 

6. Correlations Established 

by Transport 

PM and PK, a. nd more recently Plumb [1996], have 
pointed out some of the circumstances in which correl- 
ations or functional relations are established by trans- 
port. The question of how numerical schemes would 
behave in such circumstances is addressed in section 7 

after reviewing and extending th.e results of PM and 
PK in this section. Our main motivation here is to 

expose as clearly as possible the assumptions used in 
the ,lerivation, so thai iheir con•patibility with proper- 
lies of numerical transpori 'algorithms can be looked at 
in section 7. The analysis also leads to the aforemen- 
tioned generalization, equation (40) below, of the res- 
ult on stratospheric vertical diffusion given in PK and 
its predecessors. Some of the results hold only in an 
ensemble-mean sense, implying correlations with scat- 
ter rather than perfect fi•nctional relations. 

The starting point is equation (3) generalized to in- 
elude chemical sources and sinks, i.e., 

0t 
-- + c(x - - (17) 

where •$'(X)represents sources [br •½ and A(XS) repres- 
ents sinks Ibr X and• where, as before, L(.) is a libmar 
operator representing gas-phase transport. As already 
noted, linear transport preserves linear functional rela- 
tions X; - A0 + ]3 in the absence of chemical sources 
and sinks. It can be seen from (17) and its counterpart 
for 0 that such functional relations are also preserved 
in the presence of sources and sinks, provided that the 
source-sink distributions for 0 and •( are proportional 
with !)roportionality constant A. i.e.. provided that 

- - -A(,)) 

For, substituting (18) into the right of (17), we imme- 
diately find that the resulting equation is satisfied by 
X5: AO + B if we use the lineartry property of L(.). 
Assuming that (17) with initial and boundary condi- 
tions is a well-posed, as well as a linear, problem, we 
may deduce that if 3C = AO + t3 initially and at the 
domain boundaries then \ -- A•/., +/3 everywhere and 
for all subsequent tithes I. This •nakes precise, in great 
ge•erality, the idea mentioned below equation (l) in the 
Introduction that, for two gas-phase species with "com- 
mon sources and sinks," the transport, under suitable 
assumptions, shapes their mixing ratio fields • and X5 
"in the same way." It is sometimes useful to interpret 
(18) and its consequences in an ensemble-mean sense. 

PM anMyzed an interesting subclass of this general 
class of situations, in which certain assumptions about 

timescales hold, simplifying the role of O/0t(.) and re- 
placing the general stipulation of well-posedness by an 
assumption that L(.), with suitable boundary condi- 
tions understood, is invertible up to an additive con- 
stant. They used the term "gradient equilibrium" to 
denote such situations. The word "gradient" refers to 
the property that. L(B) = 0 when B is a constant, which 

that œ(.) onb (na higher 
rivarives) of its argument; that is, L(.) is indifferent 
to additive constants and sees only the way in which 
a tracer mixing ratio field varies in space. The word 
"equilibrium" refers to the assumptions about time- 
scales, which are consistent with assuming that that 
the system has forgotten the initial conditions and that 
it is either steady or close to steadiness. PM's assump- 
tions appear relevant to understanding the behavior of 
long-lived tracers in the troposphere (PM) and in the 
stratosphere (PK), and the way in which correlations 
between them can be established by transport, regard- 
less of initial conditions. 

6.1. PM•s Example of Gradient Equilibrium 

Following PM, we assume that the transport repres- 
ented by L(X) in equation (17)involves •nixing and 
tends to homogenize )• throughout the domain of in- 
terest, D say. Consistently with this (cf. remark below 
(27)), we assume that the operator L(.)is invertible up 
to 'an additive constant. Again following PM, we treat 
5' as prescribed and A as a function of the local value 
of •¾ whose sense is relaxational. By relaxational we 
mean that A(X) is a monotonically increasing function 
of 5•. The homogenization is assumed to be relatively 
fast in the sense that its longest timescale VT is much 
shorter than the other relevant timescales. These latter 

are the shortest. chemical timescale vc and the shortest 
timescale vv for unsteadiness in the tracer distribution, 
governing the magnitude of O•c/Ot in (17). In sununary, 

We introduce a sn•all parameter s = VT/min(rc, rg) 
and a slow time variable 

,- - t / min(,-c, ru) - •t / (20) 

and assume that X, S, and A are functions of position 
x and slow time •- alone, with 0/0v •< 1. Consistently 
with these scaling assumptions, we expand ¾ in powers 
of e, 

xo(x, + (x, +... 

and make appropriate rescalings of S and A: 

S - (x, 

(23) 
A1- 

A: (x(x, 

The domain D may be the whole atmosphere. 
ternatively, we may restrict attention to some subdo- 
main provided that the transport of tracer through the 
boundary of the subdomain is not strong enough to vi- 
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olate the scaling assumptions, for instance by produ- 
cing strong inhomogeneity or large unsteadiness near 
the boundary. Assuming no such violation, we note 
that then 

(L(x)) = -eC• (v)/vT d- O(e •) (24) 

where the angle brackets denote a mass-weighted aver- 
age over the domain D, and where C• scales like •q• and 
A• and is finite as e -• 0. We shall further assume that 
to leading order in • there is no net influx through the 
boundary; that is, C• --0. 

Now use the assumption that L(.) is linear. Then, 
with (21), 

- + +... 

Substituting (25)into (17) and using (22)-(23) to neg- 
lect the right hand side, we obtain •t leading order in e 

c(x0) - 0 

Because of the homogenization and invertibility as- 
sumptions, equation (26) implies that the gradients of 
X0 vanish, i.e., that X0 is a function of the slow time 7. 
alone and not of position x: 

The homogenization and invertibility assumptions are 
essential here: for instance the gradients of X0 would 
not need to vanish if L(.) represented purely advect- 
ive transport parallel to the isopleths of a steady tracer 
field, with no mixing involved. Note incidentally that 
homogenization and invertibility are not logically equi- 
valent (as can be shown by counterexample) though 
they often go together. This is discussed in section 7.1. 

At order e, (17) gives 

07- + (x0) 

Averaging this over the domain D and using (24) with 
C• - 0 gives 

- ($•) - (A• (Xo)) (29) 

which, combined with (28), gives, as PM found, 

L(X•) - (S• - (S•)) - (A• (Xo) - (A• (Xo))) (30) 
If we further assume either that the sink is uniform over 

the domain (A• • (A•)) or that the sinks are much 
weaker than the average source, A•(X0) (((S•), then 
(30) becomes simply 

(&) 

In this case we see, again using the invertibility assump- 
tion, that gradients of X• and therefore of X depend only 
on $• - (S•), and that they do so linearly though non- 
locally. In symbols, 

PM's results (30) and (31), taken together with the 
invertibility assumption, are important special cases of 
the more general result noted earlier, below (18), on 
the "shaping" of'tracer fields by transport such that 
linear functional relations are preserved. Two tracer 

fields whose spatially variable parts X? ) and X? ) both 
satisfy (31), for instance, with S1 - S• 1) and S1 • 
S? ), respectively, will be linearly related if and only if 
the ratio ($•1)_(S•I)))/(S•2)_($•)))is approximately 
constant in space and time; cf. (18). 

6.2. Generalized Slope Equilibrium 

Consider a domain D within the stratosphere with 
the vertical direction labeled by a coordinate z, equal 
to some function of potential temperature 0, and the 
horizontal direction labeled by coordinates x; D might 
for instance represent a stratospheric surf zone. It will 
be convenient to choose z = H•log(0/•0), where H• is 
a scale height for potential temperature (about 25 kin) 
and •0 is a constant, so that z is not very different from 
the geometric height. Let the timescales for horizontal 
and vertical transport be 7-H and 7-v respectively, and 
assume in place of (19) 

with 7-c the timescale for chemistry and 7-u the time- 
scale for unsteadiness of the tracer field, as before. In 
contrast with the analysis of section 6.1, we now make 
the homogenization assumption for horizontal transport 
only, so that 7-H, not 7-v, has the role of the previous 
fast timescale 7.T. This is expected to be reasonable 
for long-lived species in the stratosphere, where the ho- 
rizontal surfaces may be identified, to a first approx- 
imation, with the isentropes z - constant and where 
cross-isentropic transport is far weaker than in the tro- 
posphere. Finally, as in section 6.1, we need to assume 
that transport into or out of the domain D at its peri- 
phery is weak enough not to change the picture. 

The results now to be derived generalize those of 
Mahlman, Holton, and PK in three ways. First, we 
avoid the assumption that horizontal mixing is global 
in extent. (We note that the independent work of 
Plumb [1996] also avoids this assumption.) Second, we 
avoid describing the horizontal mixing in terms of a 
Fieklan eddy diffusivity, because it may well not be 
Fieklan in real stratospheric surf zones, as mentioned 
earlier. Third, to emphasize certain generalities we 
relax, in part of what follows, the assumption of fast 
horizontal mixing and homogenization, replacing it by 
an assumption of fast horizontal particle dispersion, 
with or without mixing. The picture then holds in the 
ensemble-mean sense, though not necessarily for each 
realization. 

In all the cases to be discussed--involving fast hori- 
zontal transport in one sense or other, on the fast time- 
scale rH--we shall have, to a first approximation, at 
least in the ensemble-mean sense, 
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Therefore, at least in the ensemble-mean sense, any two 
species whose mixing-ratio fields are thus shaped will be 
functionally related, at any particular time, not for t, tte 
reasons discussed below (18) but simply because each 
mixing ratio, or the ensemble mean of each, is a fi•nction 
of z alone. This brings in an entirely new possibility, 
namely, that nonlinear functional relations can arise. 
PK used the term :'slope equilibrium" to denote such 
situations. Here the word %lope" refers to the fact 
that the mixing-ratio isopleths will generally have finite 
•1opes. Following (and also generalizing) PK, we will 
show that 

to better approximation than (33), where Z is another 
vertical coordinate whose isosurfaces slope slightly with 
respect to z stirfaces, possibly in a longitude a•d time 
varying way. 

Consider the motion of a mal•erial particle in this class 
of situations. It will move quickly from place to place 
on, or almost on, a z surface. Its weaker motions in the z 
or cross--isentropic direction will depend on wl•ere it lies 
on •he z surface, specifically, o• whether it, finds itself 
in a region of diabatic ascent or (lescent. Such regions 
may themselves be moving horizontally, and changing 
size and shape, for instam:e becat•se of the baroclinic 
dynamics of synoptic-scale or surf 'zone eddies. If 
net. effect is equivalent to small random fiuciua•ioi•s in 
the particle's diabatic heating rate, then the z motion 
will have the character of a randon• walk with small 

vertical steps, added to any Lagrangian-mean vertical 
drift. 

In an ensemble mean, with the horizontal cross-sec- 
tional area of the domain D randomly sampled by 
particles, the effTect of such a random walk is approx- 
imately equivalent, as is well known, to one-dimen- 
sional Picktan vertical diffu. sion together with a one- 
dintensional Lagrangian-mean vertical drift. The latter, 
being one-dinmnsional. a func[iou of z only, is equival- 
ent to an Eulerian-mean vertical mass flax pu,, •;iving 
approximately 

(35) 

Here the overbar denotes the ensemble and horizontal 

area mean, F(X ) is the flux of tracer subs•a,nce across 
the z surface, w = Dz/Di, the diabatic vertical velo- 
city, suffix z denotes the vertical derivative, N is the 
effective vertical diffusion coefin. cie. nt in the z direcl, ion, 

describing the mean effect of l he vcrticai random walk, 
and p is now' defined in such a way that t, he mass element 
dm: pdzd!ldz in these coordinates. 

The one-dimensional version of a well-known argu- 
ment [Taillot, 1921] shows that the value of Ix[ is given 

by f• w"(t)w"(t- r)LEdr, where the overbar with su- 
perscript •:LE" denotes a suitably weighted Lagrangian 
ensemble mean, double primes denote the randomly' 

fluctuating contributions, and the arguments t and t-r' 
refer to the same particle at different times. The in- 
tegrand is the relevant Lagrangian velocity autocovar- 
iance• in which the double prime denotes a Lagrangian 
fluctuation, not, an Eulerian one. So the most general 
conditions for getting the behavior (35) are those un- 
der which (a) the Lagrangian velocity autocovariance is 
statistically stable, and such that the above integral is 
well defined (integrand evanescent, not strongly oscillat- 
ory), and (b) there is su•cient uniformity in tinge and 
in the horizontal, and sufficient uniformity in vertical 
gradients, on timescales • rH, for Taylor's argument 
to apply: in particular, the Eulerian-mean gradient •z 
can be taken also as an approximately uniform back- 
ground gradient when doing Lagrangian averaging. 

The conditions under which (35) holds include two 
opposite extreme cases: first• that of a steady, geograph- 
ic'ally fixed diabat, ic heating patter• w(x) and random 
horizontal partMe n•otion. a•td second, that of steady 
horizontal particle mo•ion and randomly changing dia- 
batic hea•ing pa•ern w(x,t). Although the firs• ex- 
treme is usually assumed, for instance in the papers by 
PK and by Holton [1986] and Mahlmau et al. [1986], 
the real situai, ion is presumably somewhere between 
the two extremes. Recent estimates of particle tra- 
jectory statistics in stratospheric surf zones fi'om ob- 
servational data (L. C. Sparling et al., Diabatic cross- 
iscntropic dispersion in the lower stratosphere, submit- 
ted to Jo•trn(-tl of G•ophgs•cal Rcse;a•ch, 1997) suggest 
that the real situation is closer to the first extreme. The 
same estimates-•-which litelude direct estimates of surf- 

zone Lagrangian velocity autocovariances and evidence 
fbr their statistical stability•--show ensemble-mean 
havior consistent with (35), with N • 0.2 m2s -!. 

Note that this N is not a simple turbulent eddy dif- 
fusivity, in the classical sense of weakly inhol•logen- 
eous turbulence thec)ry. Such theories are hardly ever 
applicable, because of the extreme spatial inhomogen- 
eity of real, naturally occurring turbulence. Rather, 
N is a %hear-dispersive diff•lsivity" depending jointly 
on the fast horizontal transport and on the steady or 
unsteady difi•:renl, ial vertical advection [7hglor, 1953; 
Holton, 1986; Muhb•a• ci al., 1986; PK]. As the fbre- 
going argument makes clear, and as equation (40) will 
confirm, the well-definedhess of N does not depend on 
any scale separation in the horizontal. In particular, it 
does not depend on whether the horizontal transport 
can be described as Fieklan diffusion. If we think of the 

horizoni al transport as particle dispersion by a random 
walk• then there is no requirement for the horizontal 
steps to be small in any sense. as indeed they might 
well noi t>e in a real slratosplleric surf zone. 

In addition to the N in (35), tl•ere may be a vertical 
diffusivity due to intermittent mixing in small-scale, 
three-dimensional turbulent layers, producing an addi- 
tional vertical random walk [Dewart, 1981]. The result- 
ing vertical diffusivity will combine additively with the 
[•- of eqt]at, ioii (35) Jf the iwo ra•Mom walks are slatist- 
ically indepen•ient. 
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Equation (35) can also be derived within the Eulerian 
framework, again avoiding assumptions of scale separ- 
ation or Fickian eddy diffusion in the horizontal. To 
do this, we represent the fast horizontal transport by 
a linear operator H(X t) analogous to the L(X) of (3) 
and (17), with single primes denoting a departure from 
the horizontal area mean. Thus single primes denote an 
Eulerian, not a Lagrangian, fluctuation. We use suffixes 
to denote derivatives and replace (17) by 

t t t _S t A t x, + H(x')+ + + - (36) 

where H(.) is taken to satisfy the homogenization and 
invertibility assumptions, either for individual realiza- 
tions or in the ensemble-mean sense. Note that, with 
X t - 0 by definition, there is no undetermined addit- 
ive constant: invertibility now says that the field X t is 
uniquely obtainable from the field H(Xt). Note that 
the linearity property implies H(X t) - O. Also, Z(.) is 
taken to be indifferent to vertical gradients, seeing only 
the horizontal structure of the X t field at constant z. 

Recalling the scaling assumptions (32), we see that 
the dominant balance in (36) will be between the second 
and fourth terms, under reasonable further assump- 
tions. Let X be a typical vertical variation in •, let 
•/X be a typical value of X t (•/ to be determined), 
and let W be a typical value of w •, assumed • • and 
• •/fi, so that rvW is a corresponding height scale, 
which latter we identify with X/•, assumed • •X/xt•. 
The terms in (36)scale respectively as X• • •X/w, 

S •- A • • •X/rc. Under •he assumed conditions, •here 
is no term thai can balance H(X •) excep• w•. So •here 
can be a balance in (36) if and only if 

r/• rm/rv << 1 

implying that X' is small in comparison with vertical 
variations in •. Then (36) reduces to H(x')+wt•z - O, 
with relative error O(•/), from which it follows, with the 
same relative error, that 

x' - ') (37) 

where the !inearity property, the invertibility assump- 
tion, and the indifference of H(.) to vertical gradients 
have all been used; H-X(.) denotes the inverse of H(.) 
and is a linear operator. 

The vertical flux of tracer substance per unit area 
across a z surface is (again neglecting small-scale tur- 
bulent mixing) 

= (as) 

so that the corresponding mean flux is 

•(X) = P• X + (P•)'X' 

But, because of (37), (pw)'x'- -• (pw)'H-X(w'), 
showing that, with relative error O(•/), (39) is equival- 
ent to (35) with the vertical diffusivity 

(40) 

Note that the inverse horizontal transport operator 
H- • (.) has dimensions of time, and order of magnitude 
rH giving K ,,• rHW 2. Thus if we make the hori- 
zontal transport faster, for instance, so that rH is smal- 
ler, then we get a smaller value of K. This is exactly 
as expected from the Lagrangian picture, because the 
vertical (diabatic) random walk must then have smal- 
ler steps, for any given w t field. It is also consistent 
with the classic results on shear-dispersive diffusivity 
[e.g., Taylor, 1953] and with the results obtained by 
Holton [1986], Mahlman et al. [1986], and PK, which 
assumed simplified, steady horizontal diabatic heating 
patterns of the form w(x,t) = w(y), where y is latit- 
ude, together with horizontal Fickian diffusion of the 
form H(X') = H(X'(y)) = -(KhorizXt(Y)y)y. 

The field H-X(w ') has dimensions of length and or- 
der of magnitude (( rv W, the height scale of the mean 
tracer field: H- x (w') •., rH W • •/rv W (( rv W. We 
note that H-X(w ') has two physical interpretations. 
First and most simply, it describes the vertical displace- 
ment of tracer isopleths relative to isentropes. If we 
define a new vertical coordinate Z(x, z, t) by 

z - Z + H- x(w') (41) 

then, recalling (37), we see that, to the first order in 
H-X(w t) considered as a small quantity, X(x, z,t) = 
•(z) + X'(x,z,t) •-, •(Z + H-X(w')) - •H-X(w ') 
•(Z), which is constant when Z is constant. That is, 
the surfaces Z - constant coincide with the isopleths of 
X, to the first order in small vertical displacements, i.e., 
more accurately than in the first approximation z = 
constant. This justifies (34). Moreover, H-X(w ') is 
independent of X, and so the slopes, more generally the 
time-dependent undular shapes, of the tracer isopleths 
are the same for any other tracer satisfying the scaling 
assumptions. This is PK's "slope equilibrium" regime, 
now generalized to include the possibility of arbitrary 
tracer isopleth shapes--time-dependent and longitude- 
dependent as well as latitude-dependent. 

The second physical interpretation of H-X(w ') ap- 
plies whenever we can think of the horizontal transport 
as a fast random walk (with arbitrary horizontal step 
size). Then H -• (w t) is a measure of the vertical step 
size of the accompanying cross-isentropic random walk. 
This interpretation follows from the scaling assump- 
tions (32), which imply that, to a first approximation, a 
material particle conserves its tracer mixing ratio, i.e., 
stays on a single tracer isopleth, during its horizontal 
excursions across substantial parts of the domain D. 
But this means that random vertical particle displace- 
ments, relative to isentropes, must be of the same order 
as ensemble-mean tracer isopleth displacements relat- 
ive to isentropes. These in turn, by (41)ff. applied to 
the ensemble-mean picture, are given by H -x (wt). The 
scaling relation H-X(w t) << rvW confirms once again 
that, regardless of the horizontal step size, the vertical 
step size is small in the sense required to get the Fickian 
behavior expressed by (35). 
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Because the results derived so far in this section can 

be interpreted as ensemble means, they depend only on 
having fast horizontal particle dispersion, and not on 
the homogenization assumption in its full sense connot- 
ing fast horizontal mixing. Let us now, however, re- 
vert to the homogenization assumption in its full sense, 
with the implication that generalized slope equilibrium 
will now apply to instantaneous tracer mixing-ratio val- 
ues, leading to linear or nonlinear functional relations 
between those values and not just their ensemble means. 
The observed functional relations, with small scatter, 
support this assumption as realistic. Consider any two 
tracer fields in generalized slope equilibrium, with mix- 
ing ratios X and ½. Their vertical fluxes take the form 
(35)--or, for improved accuracy, (35) with z replaced 
by Z---with the same pw and I• for both tracers. So 
the implied functional relation X = X(½) must sailsly 

dx: = Xz _ F(X) - pw X (42) 

If •-• • 0, as for instance when the domain D has 
global extent then, as pointed oul by PK• dX/d½ is 
given by the flux ratio F(¾)/F(½), at each Z. Then 
the functional relation is linear (dx/d½ - constant) 
the fluxes are Z-independent, as may happen •f condi- 
tions are nearly steady and chen•ical so•r{'es and sinks 
locally negligible, i.e., if we replace (32) by a three-way 
timescale separation Ttt • TV • rC, TU 

If we relax the assumption pw • 0, but retain the 
three-way timescale separation so that the fluxes 
and F(½) are still Z-independent, then there is still 
one case in which the functional relation X - •(½) 
ways remains linear, namely when pw is nonzero but 
Z-independent. This happens if, for instance, there is 
negligible mass flux through the sides of the domain 
as with a non-leaky %ropical pipe" model of the strato- 
sphere [Plumb, 1996]. Note incidentally that the scaling 
assumptions allow pw • 'q •w • << •w •, the condition for 
both terms on the right of (35) to be equally significant• 
Under these conditions, (42), regarded as an ordinary 
differential equation for X - X(½), has as its most gem 

an arbitrary constant. Because all quantities except 
and ½ are constant, this general solution has the linear 
form •(½)- A• + B. 

By considering possible sources, sinks and unstead- 
iness within and outside the domain D, we can v'iew 
all these cases of linear functional rolations as cases of 

gradient equilibrium in a larger domain comaining 1). 
consistently with (18)if. Conversely, X('½') can be 
linear in some cases where transport through the sides 
of the domain is significant, as with leaky tropical pipes 
[e.g., Boering et al., 1996; Minschwaner et al., 1996; 
Mote et al., 1996; Plumb, 1996; Volk et al., 1996], and 
when unsteadiness or chemical sources or sinks are sig- 
nificant [PK], within or outside the domair• 

7. Correlations Preserved or 

Established by Numerical Transport 
This section discusses to what extent the transport 

regimes just analyzed can be simulated by numerical 
models, even though the transport operators L(.) of 
such models cannot, in practice, be linear. We consider 
numerical transport operators L that are semi-linear in 
the sense defined by (16), implying that 

for any tracer field X• and any constants A and B; (43) 
can conveniently be taken, in place of (16), as the defin- 
ition of semi-linearity. The two most essential points 
are, first, that (43) is enough for the general argument 
below (18) still to hold, and, second, that the remaining 
arguments of section 6 hold likewise, with minor modi- 
fications, save for one class of exceptions consisting of 
cases of generalized slope equilibrium with strongly non- 
linear functional relations XI,½). In practice the main 
difficulty is being sure whether a given semi-linear L is 
also invertible and homogenizing. 

7,1. Numerical Simulation 

of Generalized Gradient Equilibrium 

Consider first the case analyzed in section 6.1. Lin- 
eari[y of the transport operator was assu:•ned in order 
to write equation (25), 2>11owed by inverti[>ility to de•- 
duce (27). With semi-linearity in place of linearity, 
an extra step is required in the argument' first write 

only [hat L(.) is independent of • and b•,haves reason- 
ably when •: • 0 in its argument). Then ('26) and (27) 
follow as befbre, separating powers of • and assuming 
invertibility. That is, L(X0) - 0 and •0 is independent 
of x. Thus X0 can take the place of B in (43), so that 
L(X)- •:L(x• + O(•)), and the rest of the argument 
Follows. This confirms, as indicated more generally by 
(18)if, that semi-linearity is enough to allow a numerical 
model to simulate PM's gradient equilibrium regime, if 
the model's transport, scheme is also invertible and ho- 
mogenizing. 

The invertibility assumption is used twice in sec- 
tion 6.1' first, following (26), in the weak sense that 
the vanishing of L (X) implies the vanishing of gradients 
of X, and second, following (31), in the strong or gen- 
eral sense that the field • is uniquely obtainable, apart 
fi'om an undetermined additive constant, from the field 
L(.y) ibr any X whatever. The strong and weak senses 
are equivalent [br linear L•--because fbr any X (•) and 
X (•) we have L(X ̧)) - L(X(:)) • L(X (•) - X(:)) - 0 • 
X (•) -X •(u) - 0 ....... but not fbr uonlinear L. It was pointed 
out below (27) that non-invertible continuum transport 
operators L are possible in principle. The same goes for 
finite, numerical transport operators; indeed, •hey can 
fail to be even weakly invertible. 

The linear advection scheme CD2 is the simplest ex- 
ranpie. On a, reg[llarly spaced o•e-dimensional grid with 
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a constant advecting wind, a tracer mixing ratio profile 
X made up of a constant plus a two-grid wave of arbit- 
rary but constant amplitude will give L(X) - 0, when L 
is the numerical transport operator defined by CD2 (de- 
tails in Appendix A1). Thus CD2 fails to be invertible, 
both weakly and strongly, on, for example, a periodic 
domain with an even though not an odd number of grid 
points. 

The invertibility or otherwise of VL2 and UL4 also 
depends on the domain in which they are considered. 
For the periodic domain, both VL2 and UL4 appear to 
be strongly as well as weakly invertible. This is indic- 
ated by numerical experimentation, and we have proven 
it explicitly for VL2 in the one-dimensional case (details 
omitted for brevity). In one-dimensional bounded do- 
mains with no boundary constraints on X values, VL2 
and UL4 arc, by contrast, weakly but not strongly in- 
vertible. The reason why strong invertibility fails can 
bc sccn by considering a regular one-dimensional grid 
with a constant advccting wind and a tracer profile X( 
that has a uniform, nonvanishing gradient. For both 
VL2 and UL4 it is possible to find a different profile 
X (2) :• X: (•) such that L(X (2)) - L(X(•)); this ;((2) takes 
the form of a "worn staircase" profile, equal to X:(•) plus 
a two-grid wave whose amplitude is restricted such that 
that the gradient of X (•) has the same sign everywhere 
as the gradient of X (•). For VL2 the two-grid wave amp- 
liftcs in space, implying that the restriction to a finite 
domain is essential. For UL4 the two-grid wave has 
constant amplitude in space. 

Also used in section 6 is the homogcnization assump- 
tion, which, as already remarked, is logically distinct 
from assumptions about invcrtibility. CD2 provides a 
sufiqcicnt example, on a periodic domain with an odd 
number of grid points. It is then invcrtible but not 
mogenizing. So is the usual linear spectral advection 
scheme. Both it and CD2 fail to homogcnizc because 
both, as is well known, conserve total tracer variance. 
Note also that some transport operators may, in theory, 
homogcnizc, though extremely slowly. For example, 
with the VL2 scheme the square-wave X and ½ distri- 
butions at the top left of Figures 4a,b do, in theory, ho- 
mogenize, but only at a rate that is exponentially small 
in the number of grid points per wavelength, which may 
well become zero in practice because of roundoff error. 

In practical numerical models, including GCMs, the 
model's transport operator--i.e., the advection scheme 
together with any other numerical operations such as 
scale-selective dissipation or filtering--must in any case, 
regardless of present concerns, bc substantially homo- 
genizing if the model is to have sensible-looking long 
term behavior. In GCM simulations the mixing ra- 
tio of an inert tracer tends to become homogenized 
throughout the model troposphere on a timescale of or- 
der 1 year [c.g., Thttbttrn, 1993]. 

Note in this connection that the CD2 scheme and 

the usual linear spectral advection scheme, neither of 
which are homogenizing, are widely used in GCMs for 

horizontal and vertical advection. When such advection 

schemes are used, therefore, homogenization must de- 
pend on adding extra, scale-selective dissipation terms 
to the model's transport operator in the usual way. 
From the foregoing remarks about VL2 and UL4, one 
may expect that flux-limited schemes will also, as a 
rule, require scale-selective dissipation to be added. The 
point then needing care is not to violate (43). 

The general requirements are now clear for any nu- 
merical model intended to simulate the establishment, 
by transport, of linear correlations or functional rela- 
tions between chemical species. The requirements apply 
to any circumstances covered by (18)ff., including gradi- 
ent equilibrium regimes, and may bc summarized by 
saying that, to guarantee the appropriate behavior, the 
model's transport operator L(.) should bc homogcniz- 
ing, strongly invcrtible, and semi-linear (equation (43)). 
For this purpose L(.) means the total transport oper- 
ator, including the model's scale-selective or subgrid 
dissipation, as well as advective transport. 

7.2. Numerical Simulation of 

Generalized Slope Equilibrium 

The only circumstances not covered by the discussion 
just given are those outside the general scope of (18)ff., 
i.e., the cases of generalized slope equilibrium discussed 
in section 6.2 that lead to nonlinear functional relations 

X = X(½). There, the assumptions were that the ho- 
rizontal transport operator H(.) satisfies the timescale 
separation (32) and is linear, homogenizing, invertible, 
and indifferent to vertical gradients--that is, able to 
see only the horizontal structure of the tracer field. Ho- 
rizontal structure, for this purpose, has an unambigu- 
ous meaning, namely, structure on an isentropic surface, 
i.e., z: constant in the notation of section 6.2. 

The timescale separation (32) and the indifference to 
vertical gradients have a straightforward meaning only 
in numerical models whose coordinate levels coincide 

with isentropic surfaces. In such a model we may usu- 
ally isolate the horizontal part of the model's transport 
operator, and identify it with the H(.) of section 6.2. As 
before, we can no longer expect the model's H(.) to be 
linear, but if H (.) is semi-linear, homogenizing, strongly 
invertible, and indifferent to vertical gradients, then the 
argument leading to (35) via (37) and (40) goes through 
exactly as before. In deriving (37), in particular, semi- 
lincarity and indifference to vertical gradients means 
that the factor •z can be treated like the constant A in 
(43), hence taken outside H -• to give (37). Note that, 
for the reasons discussed in section 7.1, the vertical part 
of the model's transport scheme is likely to include, im- 
plicitly or explicitly, an extra scale-selective diffusion 
that will add to--and with present-day vertical resolu- 
tions may well be larger than--the t•: of equation (40). 
Otherwise, the model's vertical profiles will be vulner- 
able to problems like the two-grid-wave problem already 
discussed. 
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Models in coordinates other than isentropic will tend, 
in effect, to have still more vertical diffusion, from the 
indirect effect of mixing along sloping isentropes that 
cross the model's coordinate levels. With shallow slopes 
we can still have Fickian vertical diffusive behavior, for 
the reasons discussed in section 6.2. This may or may 
not be enough to prevent vertical two-grid waves, which 
have been found for instance in GCM simulations us- 

ing scheme CD2 for vertical advection [e.g., Thubur•, 
1993]. Such grid waves will cause spurious scatter in 
tracer correlation diagrams that would otherwise show 
linear functional relations X•(•), precisely because they 
imply failure of the invertibility and homogenization as- 
sumptions. 

The timescale separation (32) between vertical and 
horizontal transport, can be violated by "numerical •.nix- 
ing" (sect ion 4.2). If X(¾') is strongly nonhnear, such 
that the two tracers have vertical profiles with very 
ferent height scales, tl•en even a se[ni-•li•ear• 
izing, and strongly invertible model transport scheme 
will act differently on the two profiles, generally in such 
a way as to produce effects like those suggested in Fig- 
ures l a,b and discussed in section 4.2. These will be 
significant if and only if the ':numerical mixing" is fast 
enough to compete strongly with the ten•tency toward 
generalized slope equilibriu•n. 

8. Conclusions 

In this paper we have addressed two cl•)sely related 
questions about numerical advection schemes, and about 
numerical transport schemes in general, namely• whether 
they can (a) preserve preexisting correlations or 
tional relations between the mixing ratios of different 
chemical species, and (b) establish such relations, as 
transport undoubtedly does for long-lived tracer spe- 
cies in the real atmosphere [PM, PK]. In the process, 
we have arrived at some general insights (sections 6,7) 
into when and how transport can have such effects both 
:.. the real ••phere and in _,,_,,,•erica..! m_nd•!,• 
of the theoretical results hold only in an ense•nble--mean 
sense, and all can be interpreted in that sense, if' desired, 
implying correlations with scatter rather than perfect. 
functional relations. 

Functional relations or correlations due to transport 
arise in two distinct ways. The first and most general 
way is characteristic of PM and PK's "gradient equi- 
librium" regimes and their generalizations, see (18)if., 
and concerns linear relations only. The restriction to 
linear relations is essential to what is inw-•lved, namely, 

The second way is simply through the efi'ects of fast 
transport on two•dimensional surfaces, as expressed by 
the timescale separation (32). This is characteristic 
of PK's stratospheric "slope equilibrium" regimes and 
their generalizations, see (35)-(41), in which the relev- 
ant surfaces are quasi-horizontal isentropes. Such trans- 
port will tend to produce one-dimensional mixing-ratio 
fields, implying that all species satisfying (32) are func- 
tionally related, perhaps nonlinearly. When (32) holds, 
the mixmg-r'a[io isopleths have small bu[ nonv'anishing 
slopes relative to the isentropes; these slopes are the 
sam. e for all species satisfying (32) and can depend on 
time and longi[ude as well as latitude, as is made ex- 
plicit by eq•lation (41). In order for a num. erical model 
stratosphere to simulate such "generalized slope equilib- 
titan" regimes, the n•ost crucial requirem. ents are that 
the horizontal tra•nsf>ort operator tt(.) be homogeniz- 
ing and strongly in•,crt. ibh:.• a•.•d that vertical "numerical 
n•xi•'•t•" (sect.•on 4.•) •'nd any ot, l•er vertical transport 
is slow enough not to violate (32), hence not to com- 
pete too strongly with the all-important fast horizontal 
transport. 

All the foregoinz requirements may well be satisfied, 
and satiMied r•hcr e•sily, in • numerical model that is 
otherwise into:curate. For i•stancc the requiren•ents for 
gc•eralized gradient e(tuilil:•rium seem practically cer• 
[cdn to be satisfied if the n•udel's true, sport o[.•erator is 
equ'valent to a..•y se•ni-.linear :advc(:t'i(m sclteme plus a 
suflicientiy strong, and likewise sem'•-linear, or linear, 
scale-scle•:tive dissq_>a•ion. Thus the successful preser- 
ve-•tirm and esta. blishit•ent of 1inea, r fimctio•lal relations 

and correlat ions. in p•r[lcul•½r, is no guarantee of li•odel 
accuracy' st•a, pii•g two tracer liel{ts the s•me way does 
not imply shaping them the right way. 

Appendix A' Advection Schemes 

A1. Second-Order Genrered Differences• CD2 

Interfacial values Xf - X•/2 of the mixing ratio, X, 
on either side of l, he kl, h grid point are defined by 

X•+•/2 - 5'[X• + X".•+l) (44) 

and similarly for .•_•/•. A leapflog time step is used' 

where c is the Courant number, 

c - u At/Az (46) 

with u the wind speed, At the •ime step• •n(t Aa: the 
the shaping of two mixing-ratio fields "in the same grid spacing, Ay- x•+•--..c•. 
way, making their isopleths coincide," in tim fully gem 
eral sense of (18)ff. An analogous shaping can occur 
in a numerical simulation whenever the model's trans- 

port operator L(.) is semi-linear, homogenizing, and 
strongly invertible, as discussed in section 7.1. Note 
that the semi-linearity requirement, equation (43), ex- 
cludes negative-value filling. 

A2. Flux-Limited Scheme VL2 Based on 

Second-Order Differences with the van Leer 

Limiter 

Interfacial values • X•kñ•/2are defined on either side 
of the kth grid point in a way that corresponds to a 
high order, m this case se•:ond-order, scheme, 
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H -- (Xk + Xk+x)/2 (47) X•+•/2 

and similarly for X•-•/2. We also define interfacial val- 
L that correspond to a low-order (first-order ues X•ñ•/2 

upwind) scheme, e.g., 

X•, c>0 - (48) X•+•/2 
Xk+•, c < 0 

These are combined to give Xf - X•/2 where 

O+r 
) c>0 X•+•/2 , - 

Xk+l/2 -- L r H L 4-( c < 0 - 
(49) 

and similarly for X•_•/2. Here 4i(r), the flux limiter, 
is defined by 

q•+(r) -- r + [r I q•- (r) - q•+(1/r) (50) 
1 + Irl' 

where 

= (51) r• - AX•+•/2 X•+• - K• 
A forward time step is used' 

(t) , (t) _ x•t• = - 
Semi-linearity in the sense of (16) and (43) follows by 
noting that (51), being a ratio of differences, is inde- 
pendent of A and B when X- A•+B. Notice also 
that the flux limiter produces, among other effects, the 
nonlinear antidiffusive or step-steepening behavior men- 
tioned in section 5.1. With c > 0, a step in mixing ratio 
separating two nearly flat regions, like that seen in the 
top left of Figure 44, will have the flux limiter •+ > 1 
on the downwind side of the step and •+ < 1 on the up- 
wind side. Thus the scheme is biased downwind on the 

downwind side of the step and upwind on the upwind 
side, so that each grid point is most strongly influenced 
by the nearest nearly-fiat region, and intermediate mix- 
ing ratios are prevented from diffusing outward. 

A3. Flux-Limited Scheme UL4 Based on 
Fourth-Order Differences wi•h the Universal 
Limiter 

Interfacial values are defined corresponding to a high- 
order, in this case fourth-order, scheme, 

X•+•/2 - (-Xk-• + 7K• + 71•+• - X•+•)/12 (53) 
and a low-order (first-order upwind) scheme (equation 
(48)). To get the interfacial values Xf, the low-order 
value at time step t- At is combined with the high- 
order value at time step t, 

L(t-At) q•+, H(t) K(t_At,t ) __ Kk+l/2 q- 
k+l/2 L(t- At) • H(t) 

L(t--At) 
- X•+•/2 ),c->0 

L(t--At) 
-X•+•l• ), c < O 

(54) 

where the flux limiter 

(55) 

•b- - max 0, min H(t•-- -- ..-EF-(t-at) ' 
Xk+•/• - Xk+•/2 

-A •+3/2 ,1 (56) i _ I ,,H(•-- L(t-at) C xU+•/2 -- XU+•/2 
is equivalent to the "universal limiter" [Leonard, 1991; 
see also Thubura, 1993]. Because the interfacial value 
depends on values at time step t - At and time step t, 
the time step is a hybrid between forward and centered 
steps, 

x(t+at) (t-at) . , (t-at,t) _ x(t-at,t) • - x• - zctx•+•/• •_•/• ) (57) 
where superscript (t- At,t) means the average over 
the values at the two times. Semi-linearity in the sense 
of (16) and (43) follows by noting that (55) and (56), 
involving only ratios of differences, are independent of 
A and B when K = A•p + B. 

Appendix B' Monotone Schemes 
and "Numerical Mixing" 

The following justifies the two assertions about mono- 
tone schemes made in section 4.2. We assume through- 
out that the advection scheme has property 4 of sec- 
tion 2, listed above equation (9), namely, that spatial 
homogeneity is preserved. Monotone, in the sense of 
Hatten [1983], means that, at each time step t --• t + At, 
the scheme also satisfies 

(t+At)/oK•) > xp _0 (58) 
for each pair of grid points P and Q (t and At being 
fixed while the grid point K values vary). 

First, this assumption implies, but is far more re- 
strictive than, property 3 of section 2 that the scheme is 
shape preserving tHatten, 1983]. Property 3 is implied 
if we take extremum at the grid point P to mean the 
only thing that can be relevant, namely, an extremum 
with respect to every point of Sp, the set of grid points 
seen by the scheme when updating the value at the grid 
point P. For instance, if the extremum is a maximum, 

with value X• ) - Kmax, say, at time t, then this is 
taken to mean that K• ) _< Kmax at every point Q of 
Sp. Then (58) implies that increasing all the K• ) val- 
ues up to Xmax would make X• +•t) either increase or 
stay the same; and property 4 implies that the final 
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value of XS• +•xt) would also have to be equal to ;•m•x' It 
follows that, with the actual •¾•)values, •¾•+•xt)_< 
Similarly, if the extremum at P is a minimum, then 

(t+•t) •p • •y . This establishes property 3. 
The convex hull property, implying "numerical mix- 

ing" of a preexisting nonlinear functional relation to the 
concave side only, is esl ablished by extending the above 
reasoning as Follows. Recall Dom section 4.2 that the 
convex hull of the set I(Sp) is the smallest convex poly-. 
gon enclosing all the points of I(Sp), as illustrated in 
Pigure lb by the boat-shaped polygon AB...E. More 
generally, some of the points of I(Sp) could be interior 
to the convex hull, which has the general property that 
each point of I(Sp) lies either on the polygon, or to one 
side only, the interior side, of each straight line that 
makes up the polygon. 

Consider one such straight line, say, L, extrapolated 
to infinity. lt, divides the OX plane t)f the c•:,rrelation 
diagram into exactly two parts, one of them containing 
all the points of I(Sp). All these points can be moved on 
to k via parallel paths of finite slope, making all the val- 

ues y•) change in the same sense. So do all the corres- 
ponding values of 0, say •. Furthermore, once all the 
points have been moved on to L. then the semi-linearity 
prop•rty (4•) alolies. This says that the correspond- 

Heverslng the process and using (58) shows that the 
updaled values fro• •1•' acttiM I(Sp) must lie on the 
same side of L as/(Sp) itself. Repeating this argument 
for the other relevant straight lines of the convex hull 

shows that the update•l values ', ½,p cannot 
lie outside the convex hull, as asserted. 
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