
Editor's Note: This is the eighty-fifth in a series of review and tutorial papers on various aspects of acoustics. 

On the oscillations of musical instruments 

M.E. Mcintyre 
Department of .4pplied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, 
CB3 9EW, England 

R.T. Schumacher 
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 

J. Woodhouse 

Topexpress Ltd., 1 Portugal Place, Cambridge, CB5 8.4F, England. 

(Received 20 August 1982; accepted for publication 28 July 1983) 

The time-domain description of musical and other nonlinear oscillators complements the more 
commonly used frequency-domain description, and is advantageous for some purposes. It is 
especially advantageous when studying large-amplitude oscillations, for which nonlinearity may 
be severe. It gives direct insight into the physical reasons for the variation of waveform as playing 
conditions vary, and into certain phenomena which may seem counter-intuitive from the 
frequency-domain viewpoint, such as the musically undesirable flattening in the pitch of a bowed 
string when the bow is pressed too hard onto the string. It is easy to set up efficient time-domain 
simulations on a small computer, a fact that has been surprisingly little exploited in musical 
acoustics. The simplest relevant model is described here. It demonstrates some of the basic 
nonlinear behavior of the clarinet, violin, and flute families with very little programming effort. 
Remarkably, a single set of model equations has relevance to all three cases, at a certain level of 
idealization, with appropriate choices of parameter values and of linear and nonlinear 
characteristics. For the flute family, this simplest model gives waveforms and phase relations 
closely resembling those observed at resonance in the organ-pipe experiments of Coltman [J. 
Acoust. Soc. Am. 60, 725-733 (1976)], including the triangular pressure and velocity waveforms. 
It can be shown (again using a time-domain approach) that the triangular waveform is a universal 
limiting form, independent of detailed acoustic 'loss mechanisms provided losses are small. 

PACS numbers: 43.10.Ln, 43.75. - z, 43.40.At 

INTRODUCTION 

It is an almost instinctive reaction among physicists to 
describe vibrating mechanical systems in terms of their nor- 
mal modes. The method of normal modes is a powerful tool' 
if the system is linear and time-invariant. But if the system 
contains nonlinearities, or has properties which vary in time, 
the case is much less clear. There is then no mathematical 

tool of comparable power and generality, and different non- 
linear systems require different methods and often special 
ingenuity. This is especially so when nonlinearity is strong 
and not merely a small dep•irture from linear behavior. 

Musically useful self-sustained oscillators, exemplified 
by the woodwind, brass, and bowed-string instruments, are 
often strongly nonlinear. To a large extent, however, they 
can all be described in terms of conceptually separate linear 
and nonlinear mechanisms, according to the well-known 
scheme in Fig. 1. A nonlinear element, such as a reed, air jet, 
or bow, excites a linear, energetically passive, multimode 
element such as a tube or string. The linear element in turn 
influences the operation of the nonlinear element, as suggest- 
ed by the upper path in Fig. 1. 

The nearly periodic nature of self-sustained musical os- 
cillations makes a frequency-domain description seem at 

first sight more natural than a time-domain description, de• 
spite the presence of the nonlinear element. The normal 
modes of the linear element provide an appropriate frame- 
work for such a description, which has indeed proved very 
useful both in theory and in practice 2'3 especially when the 
linear element has complicated properties. For example, 
good shapes for the bores and tone-hole configurations of 
wind instruments have been determined or rationalized 2-• 
by considering the relationships between normal-mode fre- 
quencies which favor strong, stable, "mode-locked"regimes 
of periodic oscillation. Oscillations which are exactly period- 
ic (consisting of frequencies in an exact harmonic series) may 

.......... " [no•-linear [ l linear element {.' energy'.,:..>. ] element ... (passive) 

.. •o.rce .' I (•' V 
FIG. 1. Block diagram of a fairly general musical oscillator, idealized as an 
energetically active nonlinear element coupled to an energetically passive 
linear element. 
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be possible whatever the natural frequencies of the linear 
normal modes; but it is plausible that periodic oscillations 
should be easiest to set up if several of the normal modes 
have natural frequencies "aligned" in a harmonic series. 2'? A 
simple experiment with a violin strikingly illustrates what 
can happen if this condition is not met. 8 If one of the strings 
is rendered grossly anharmonic by attaching a small mass at 
a suitable point--a small paper clip is more than enough--it 
becomes almost impossible to excite anyof the string's grav- 
er frequencies by bowing in the usual manner. Wind instru- 
ments which similarly refuse to respond can be constructed 
using bore shapes with anharmonically related normal- 
mode frequencies, as exemplified by the "tacit horn" of Ben- 
ade and Oans. 9 

The detailed solution ofspecific problems using the fre- 
quency-domain description is a nontrivial mathematical 
task, although one that has been pushed to a reasonable con- 
clusion for moderately small amplitudes of oscillation by 
Worman •ø and Thompson TM for the clarinet and by Fletch- 
er l: for the flute or flue organ pipe, and extended to all ampli- 
tudes for the clarinet, organ pipe, and bowed string by Schu- 
macher •a-•5 and more recently {for the clarinet} by Stewart 
and Strong) 6 The computations require considerable so- 
phistication. On the whole, the results are in accordance 
with what one expects intuitively, the fundamental frequen- 
cy of oscillation usually being a "compromise" such that 
several of its harmonics lie close to normal-mode frequencies 
of the linear element? Any normal mode whose resonant 
bandwidth straddles the fundamental or a higher harmonic 
of the oscillation frequency is likely to be important. The 
relationship between actual oscillation frequencies and those 
of normal modes of the linear element forms a central theme 

of the important book by Benade. 2 No one has yet succeeded 
in expressing the relationship in a mathematically precise yet 
general way, to our knowledge, although a "sum rule" with 
something of the correct flavor was found in one case.•7 As 
we shall see, however, a completely general expression of the 
relationship would have to encompass certain cases where 
the oscillation frequency turns out, counter-intuitively, to be 
slightly but systematically different from any plausible 
"compromise" frequency? '•8'•9 

When it comes to transient behavior, the frequency- 
domain description still gives useful qualitative insights but 
the computational difficulties are now quite prohibitive. 
Transients on time scales of the order of tens of milliseconds 
are well known to be very important for the subjective char- 
acter of musical sounds. Indeed almost any parameter of the 
sound signal which is changing on such a time scale is likely 
to contribute strongly to, and may even dominate, the sound 
quality perceived by the ear-•brain system? aø-:: The same 
time scales are involved in the recognition of consonants .in 
speech. It is no accident that in professional training for mu- 
sical performance great emphasis is placed on exercises for 
steadiness of breathing or bowing, and on finesse in the con- 
trol of such things as attack, articulation, and vibrato. 

Such considerations alone would make it desirable to 

develop the theory of musical oscillators in terms of the time- 
domain as well as the frequency-domain description. In ad- 
dition, it is natural to use the time-domain description if one 

is interested in developing a detailed understanding of the 
mechanical interactions which occur from moment to mo- 

ment during a single cycle of oscillation, whether in a steady 
state or not. Among these are the physical events chiefly 
responsible for strongly nonlinear behavior, such as the clos- 
ing of a reed, the onset of slipping of a string past the bow, or 
the "switching" of an air jet past the lip of a flue organ pipe. 

Experience has shown that the time-domain descrip- 
tion has another very important advantage. Detailed com- 
putations based on it are very much easier to program and 
carry out, even for steady, periodic regimes of oscillation. to 
It is immaterial whether the nonlinearity is weak or strong. 
In this paper we illustrate the use of the time-domain de- 
scription by means of the simplest model that is relevant to 
common types of nonlinear musical oscillators. 

Despite its simplicity this model is remarkably versa- 
tile. It can be used to demonstrate essential properties of 
several physically different types of musical oscillator, show- 
ing the extent to which they may. or may not be regarded as 
analogous to one another. Almost any small computer will 
serve to implement the model. Despite various idealizations 
the level of realism appears to be commensurate, in some 
eases, with the accuracy of the best experiments to date, no- 
tably the .1976 experiments of Coltman :3 on large-amplitude 
organ-pipe oscillations. Moreover, it is very easy to extend 
this type of model to make it as realistic as experimental 
results are likely to demand in the foreseeable future. Some 
of the possible extensions will be described, especially for the 
bowed string, which is the case most thoroughly studied so 
far. 

It is interesting to note that a special case of the model 
can be reformulated (Appendix A} as an example of a nonlin- 
ear difference equation or "iterated map" of the type now 
being intensively studied for its relevance to chaotic behavior 
in a variety of physical systems? 4-:0 We may expect, of 
course, that this remark bears more relation to some of the 
sounds made by novice instrumentalists, than to those nor- 
mally made by skilled musicians. 

I. THE BASIC MODEL 

To fix ideas, we begin by thinking in terms of the clari- 
net. The modifications required to model the violin or flute 
will be described in Sec. II and Appendix ,B. In a real clarinet 
mouthpiece {Fig. 2), a single reed of springy cane controls the 
rate of flow of air from the player's mouth into the instru- 
ment. As a first approximation we may neglect reed dynam- 
ics and time-dependent flow control effects. This amounts to 
assuming that, when the player adopts a given embouchure, 

FIG. 2. Cross section of a clarinet mouthpiece. The dashed line shows the 
"lay" or curved facing that constrains the closing of the reed. 
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the volume flow rate f, or volume of air flowing through the 
gap between reed and mouthpiece per unit time, depends 
only on the pressure drop across the gap at each instant (Ref. 
2, Fig. 21.4). Then, for a given pressure p in the player's 
mouth,f will be a function ofp-q only, where q represents the 
fluctuating pressure just inside the mouthpiece. For nota- 
tional convenience we suppress explicit reference to p and 
write this functional dependence simply as 

f =F(q). (1) 

For the clarinet the function F (q) behaves roughly as indi- 
cated in Fig. 3 by the heavy curve; pressures are measured 
relative to atmospheric pressure so that q is the usual acous- 
tic pressure. The flow ratef past the reed is counted positive 
for flow into the instrument. It increases at first as the pres- 
sure difference increases from zero {q decreasing from the 
value p), but then goes to zero again when q reaches some 
value qc, say, such that the corresponding pressure drop 
p - qc is large enough to overcome the springiness of the 
reed and close the gap completely. The precise shape of the 
F (q) curve will evidently depend on embouchure and on the 
shape ofthe"lay" ofthemouthpiece behind the reed (dashed 
line in Fig. 2). Realistic F (q) shapes tend to be steeper near 
q ----p than the shape shown, and this has some significant 
consequences as we shall see. 

Of course the fmite mass of a real' clarinet reed, the 
inertia in the unsteady air flow through the gap, and the fact 
that the pressure p in the player's mouth cannot really be 
constant, all introduce departures from the assumed behav- 
ior especially at high frequencies. 2.3. n.3ø.3• These would be 
important if we were attempting to describe the finer points 
of instrument behavior of concern to the musician. Refer- 
ence 31 shows how to extend the model to take account of 

the finite mass of the reed, which gives the reed a finite reso- 
nant frequency which the player can vary between about 2 
and 3 kHz, and whose importance for the subjectively 
judged tone quality of the clarinet's upper registers has been 
demonstrated by Thompson.• • The idealization represented 
by Eq. (1) does, however, capture the basic nonlinearity, 
which mathematically speaking is a severe one. The function 
F(q) shown in Fig. 3 is not only nonlinear, but has a discon- 
tinuity in slope at q = q•. Such discontinuities occur in the 
nonlinear mechanisms of many musical oscillators, and give 
rise to some of the mathematical difficulties encountered in 

frequency-domain calculations. 
By contrast, the rest of the clarinet and its environment 

behaves as a linear system to good approximation. More- 
over, we can describe that part of the system using standard 

ideas about wave propagation, an approach that proves to be 
computationally advantageous. The key idea is to write the 
acoustic pressure signal q(t } in the mouthpiece as the sum of 
two contributions representing incoming and outgoing 
waves, say q•(t ) and qo I t ), where t is time. More precisely, we 
suppose that there is a section of uniform tube just beyond 
the mouthpiece, in which the pressure signal takes the one- 
dimensional form 

q(x, t} =qo(t-- x/C) + qi(t + x/C), 

where x measures distance along the uniform section and C 
is the sound speed. The associated contributions to the 
acoustic volume flow rate can be written as 

Z - 'qo (t -- x/C ) and -- Z - 'q,(t + x/C ) (2) 
for the outgoing and incoming waves, respectively, where Z 
is a real, positive constant, and the acoustic flow rate is 
counted positive away from th• mouthpiece. Z is the wave 
impedance or characteristic impedance for the uniform sec- 
tion of tube, and is equal to C times air density divided by 
cross-sectional area. 

The linear properties of the clarinet can now be defined 
in terms of the incoming wave which results from a given 
outgoing wave. Suppose, for instance, that an infinitely nar- 
row pulse in the form of a Dirac delta function • (t) is sent 
down the tube from x = 0 at time t = 0, say, so that 
qo(t) --•(t ). Since the tone holes and bell are strong reflec- 
tors only for sufficiently low frequencies (below a kHz or so 
for a real clarinet32), the signal returning to x = 0 must lose 
its delta-function character and take on some smooth shape. 
Let the shape ofthis hypothetical reflected signal be denoted 
by r(t); that is, 

qi(t } = r(t ) when qo(t 

We may call r(t ) the "reflection function." It may be thought 
of as the disturbance that would be found at x = 0 after the 

delta-function pulse is sent out, if the tube were terminated 
at x = 0 by a perfect absorber such as a uniform, semi-infi- 
nite tube of the same cross section. Note that considerations 

of causality imply quite generally that r(t ) = 0 when t < 0. 
As a very simple idealization, r(t ) might be imagined to 

look like the inverted hump shown in Fig. 4. For a less sim- 
plified "clarinet" with a real bell but no tone holes, r(t ) would 
h•ave a more complicated shape, with several slight undula- 
tions following the main pulse. For a real clarinet with some 
tone holes open the shape would be even more complicated, 
showing the effects of multiple reflections. Some explicit ex- 
amples are worked out in Ref. 31. There is no difficulty in 
allowing for such details, if desired, and for the effects of bore 

FIG. 3. Heavy curve: Simplified nonlinear characteristic F(q) for a clarinet- 
like oscillator. The curved part is unrealistically symmetrical; see text near 
Eq. •24]. Sloping straight lines: Eq. •10) for three different values ofq,,. 

r(t) 

T t 

'FIG. 41 The simplified reflection function r(t ) used in most of our demon- 
stration examples (but of. Fig. 15). 
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nonuniformity and acoustic boundary-layer dissipation. 
One can choose the shape of r(t ) to be as realistic as one 
wants, on the basis of laboratory measurement or theoretical 
calculation. 

Because we are dealing with the linear part of the sys- 
tem, the principle of superposition may be used to write 
down a general formula for the incoming signal when the 
outgoing signal has arbitrary time dependence qo (t) at x = 0. 
The incoming signal qi(t ) is given in general by 

qi(t ) = r(t )*qo(t ), (4) 

where the asterisk denotes convolution, defined by 

r(t )*qo (t ) = qo(t )*•t ) = t•t ')qo(t -- t')dt '. (5) 

Note that according to linear acoustic theory the total area 

A = r(t')dt'= -- 1, (6) 

for the reflected pressure signal in any open tube, regardless 
of the detailed geometry. This expresses the fact that accord- 
ing to linear acoustic theory there can be no permanent, 
steady difference in pressure between the interior of the tube 
and the air outside. For, in our notation, the acoustic pres- 
sure at the reed is 

q(t ) = qo(t ) + q,(t ). (7) 

It must tend to zero, after an initial transient, if qo and the 
associated flow rate Z - •qo given by (2) increase from zero to 
some ultimately steady value, such as it might have if the 
player were blowing steadily down the instrument with the 
reed not vibrating. This state of affairs can be described by (4) 
only if (6) holds [in which case (4) gives qi = - qo, so that 
q = 0]. In a real clarinet there would in fact be a very small, 
hydrodynamically induced excess pressure inside the bore, 
which we are neglecting and which cannot be described by 
linear acoustic theory. Under conditions of practical interest 
it is roughly proportional to flow rate squared, 33 and is 
usually negligible in comparison to the pressure drop p-q 
across the reed, in which we are interested in connection 
with Fig. 3. This is because the bore is very much larger than 
the gap between reed and mouthpiece. 

All that is now needed to complete the formulation is to 
note that the acoustic flow rates corresponding to qo (t) and 
qi(t ), given by setting x = 0 in (2), 34 may be added to give the 
total acoustic flow ratef(t ) at the reed, so that 

Zf(t ) = qo(t ) -- qi(t ). (8) 

Equations (1), (4), (7), and (8) comprise the model equa- 
tions for the idealized clarinet. They may be given a more 
compact form by noting that the sum and difference of Eqs. 
(7) and (8) are, respectively, 

2qo=q+Zf and 2q,=q-Zf (9) 

Substituting these results into (4) we get 

q(t) = qh(t) + Zf(t), (10) 
where 

qh (t ) = 2q,(t ) = r(t )* {q(t ) + Z f(t )]. (11) 

Equations (1), (10), and (11) are almost trivial to solve 
numerically. Ifq(t ) andf(t ) are known at all times earlier than 

the present, we can step forward in time as follows. First qn !s 
computed from Eq. (11). It may be thought of as the contri- 
bution to q attributable to the past history of the system. Any 
simple numerical approximation to the convolution integral 
in (11) will do: for a smooth, well-localized r(t ) like that in 
Fig. 4 the trapezoidal rule is as good as any? Then the pres- 
ent values off and q are found by solving (1) and (10) simulta- 
neously. The time is advanced by a small step At and the 
process repeated. Ifr(t ) is zero or negligible except for a small 
fraction of an oscillation period, as in Fig. 4, then even the 
most time-consuming part of the operation, computation of 
the convolution integral, is quite rapid. Hundreds of cycles 
of oscillation can be computed in a few minutes on a mini- 
computer. (Indeed, if the convolution integral were done by 
hardware using integrated circuits available for the purpose, 
and the remaining programming done as efficiently as possi- 
ble in assembly language, a fast minicomputer could pro- 
duce results at a cycle rate in the audible range. The result 
would perhaps have some novelty: an electronic musical in- 
strument based on a mathematical model of an acoustic in- 
strument.) 

The simultaneous solution of(l) and (10) at each time 
step, for given qn, can be visualized graphically as in Fig. 
3. 36'37 It corresponds to finding the intersection of the heavy 
curve representing (1) with the straight line of slope Z -• 
representing (10). Positions of the straight line are illustrated 
for three different values ofqn, marked (i), (ii), and (iii). The 
process of computing the intersection point (q, f) at each time 
step can be made quite efficient by taking advantage of the 
fact that q varies monotonically with qn. We shall assume for 
the present that F (q) is such that there is only one point of 
intersection. The consequences of multiple intersections, 
which are in fact important for' the bowed string, will be 
discussed in Sec. IIC below. 

We may want to calculate r(t ) from a knowledge of the 
complex impedance Z, (co) of the linear element, where co is 
angular frequency. Z L (co) is defined by 

zL (co) = (12) 
where •(co) and.•(co)are the Fourier transforms øfq(t) and 
f (t ), for instance, 

f(co) = exp(-jcotlf(t)dt. (13) 

If the transform of r(t ) be denoted similarly by 

•(co) = exp( --j cot )r(t ) dt, (14) 

then Eq. (10), using (11) and the convolution theorem, trans- 
forms to 

0(co) = z?(co)l + z?(o,), 
giving 

?(co) = IzL(co) - z I/{z(co) + z I. (15) 
Taking the inverse Fourier transform gives r(t ). 

The reflection function r(t) is to be carefully distin- 
guished from the Green's function or impulse response g (t) 
[which may be defined here as the inverse Fourier transform 
of Z• (co) itself]. One may describe the linear element in terms 

1328 J. Acoust. Sec. Am., Vol. 74, No. 5, November 1983 Mcintyre eta/.: Oscillations of musical instruments 1328 

Downloaded 06 Jan 2011 to 131.111.17.178. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



of either, but the computational advantages of working in 
terms ofr(t ) rather thang (t) are overwhelming for the type of 
oscillator under discussion, as was pointed out in Ref. 19. 
The reason is that g (t) differs significantly from zero over a 
far longer time interval than r(t ), of the order of the decay 
time of free motion of the linear element, so that the use of 

g (t) would require computation of an enormously long con- 
volution integral at each time step. Some further discussion 
concerning this point is given in Ref. 31, and in Appendix B 
of this paper. 

The use of Fourier transforms provides the simplest 
general way of ensuring that the linear element of the model 
is energetically passive, since the condition for that to be true 
is simply that the real part of Zt•(•o) be positive or zero at all 
real frequencies •o. In fact we shall require it to be strictly 
positive for all real, nonzero •o, so that acoustic energy is 
dissipated, as in actual musical instruments. That is, 

Re{ZL(co)>0, for o•0, real. 

Equivalently, we require 

Ito)l < 1, for •o•:O, real. (17) 

This follows from the previous two equations and the fact 
that the wave impedance Z is a real, positive quantity. 

II. SOME EXAMPLES 

A. Preliminaries 

Even with reflection functions r(t) having very simple 
shapes, the varieties of behavior that can be produced by 
solving Eqs. (1), {i 0), and {11) on a computer are seemingly 
endless, and are quite reminiscent of the varieties .of behavior 
exhibited by real instruments in the hands of skilled or un- 
skilled players. We present two examples oflarge-arnplitude 
clarinet-like oscillations involving closure of the reed, and 
then go on to show how. almost the same model can be made 
to simulate aspects of the behavior of other instruments at 
various levels of idealization. Included are large-amplitude 
simulations of a flute or organ pipe which despite the simpli- 
city of the model are actually more realistic, in important 
respects, than any previously published to our knowledge, 
with the exception of the (much more elaborate) frequency- 
domain calculations described in Ref. 14. The latter calcula- 

tions seem to have been the first to account qualitatively for 
the triangular waveform observed in the recent organ-pipe 
experiments of Coltman? Our model produces the same 
waveforms with far less computational effort, accompanied 
by greater physical insight. 

The reflection function r•t ) used throughout most of this 
paper has the simplified shape shown in Fig. 4, roughly imi- 
tating the case of a tube with no tone holes. A Gaussian 
function' 

(t < 0) 

is chosen for convenience. The constant b is typically chosen 
so that the full width at value •2 a, namely, 

2b - '/2(1oge 2)'/•, (19) 
is 5% to 40% of the round-trip time T = 2L/C, L being the 
effective length of the tube. With these values of b, r(t) is 

negligible for t = 0 (at most 3 X 10 -s a), and so for practical 
purposes is symmetrical about t = T. This will be found con- 
venient for demonstrating certain fundamental points of in- 
terest. Strictly speaking the symmetry of r(t) is unrealistic, 
but the basic behavior to be described is not sensitive to the 

precise shape of r(t). If we were attempting to describe the 
finer points of instrument behavior of concern to the musi- 
cian, then a consideration of the detailed shape would be- 
come relevant and indeed vital. 

The time stepAt for the simulations is taken as T/128 
unless otherwise indicated. For the model clarinet (and the 
bowed string} a is chosen so that the discretized, numerical 
analog of relation (6) (we used the trapezoidal rule) holds 
exactly in the simulations. The required values of r(t ) were 
stored in a look-up table, so that the exponentials were evalu- 
ated only once. 

B. Clarinet-like oscillations 

Figure 5 shows waveforms taken from two examples 
which resemble the large-amplitude behavior of a clarinet. 
The two examples occupy the left and right halves of the 
figure. The topmost traces show q{t ), and those second from 
the top the corresponding f(t). It is immediately obvious 
from the waveforms, which are anything but sinusoidal, that 
these oscillations are highly nonlinear. As well as using the 
simple form (18) for the reflection function, these particular 
examples use the simplest possible analytical representation 
of the curved part of the nonlinear function F(q), namely the 
parabola 

F (q) = k ( p -- q)(q -- q½), (20) 

where k is a positive constant. This is the shape actually 
plotted in Fig. 3, with the numerical valuesgiven in the cap- 
tion to Fig. 5. In the example shown on the left [Fig. 5{a)], the 

½al 

FIG. 5. First few cycles of two clarinet-like oscillations started from rest, 
obtained by solving Eqs. (I ], (10}, and (11 ) with the F(q} shown in Fig. 3..The 
waveformsofq(t },f{t ),qo{t ), and qi(/I areshown. Valueaofqandfmarked (i}, 
{ii), and (iii} correspond to the positions of the heavy dots in Fig. 3. The left- 
hand set of waveforms (a) is for a reflection function of full width (19} equal 
to 5% ofthe time T for one round trip, or 2.5% of one oscillation period, 
and the right-hand set lb} is for width 20% of T, or 10% of one oscillation 
period. Other parameter values (for both sets of waveforms): k -- 0.2, p = 3, 
q½ = -2 in Eq. (20), for t>0, in units such that Z= 1; a in Eq. 118) is 
determined by the trapezoidal approximation to (6}. The two sets of wave- 
forms are arranged in columns with the same horizontal time scales, so that 
simultaneous events occur directly above or below each other. 
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full width (19} of the reflection function is 5% of the round- 
trip time T = 2/,/C from reed to bell and back. On the right 
[Fig. 5{b}] it is 20% of T, the broader hump implying a 
greater loss of high-frequency components during the round 
trip. This accounts for the more rounded appearance of the 
right-hand q waveform. To start the oscillations, the blowing 
pressurep is brought instantaneously from zero to a steady, 
positive value for t > 0 {which is why the initial corner of the 
waveform is not rounded). Undisturbed conditions, 
f= q = 0, are assumed for t < 0. In both examples, the am- 
plitude finally attained is such that the peak positive excur- 
sion ofq nearly coincides with the right-hand zero ofF{q) in 
Fig. 3, at q = p ----- 3, corresponding to the label {iii) in the 
figures. The peak negative excursion of q, label (i), goes wdll 
to the left of the point q = qc = -- 2 at which the reed closes 
completely. In both examples the period is 2T, or 4L/C, i.e., 
two round trips from reed to bell,just as with the lowest note 
on a real clarinet. 

What is happening inside this simplified model "clari- 
net" can be visualized with the help of the bottom two traces 
in Fig. 5(a) or 5{b). They show the outgoing and incoming 
pressure signals qo(t ) and qi(t •, calculated from Eq. (9). Ev- 
ery half-cycle of the periodic oscillation, a pressure jump 
propagates outward from the reed. Half a period later, it 
arrives back having been inverted and smeared out by convo- 
lution with the reflection function [Eq. {4)]. The smearing 
can be discerned most easily in Fig. 5(b), by carefully com- 
paring the shapes of each jump in qo{t ) with the correspond- 
ing one in qi(t ) half a period later, for instance those joined 
by the slanting, dashed line. 

As the inverted, smeared-out pressure jump arrives 
back at the reed, it causes the reed to close, if the jump is 
negative {as in the example just indicated) or to open, if the 
jump is positive. During this process qh (t), which is equal to 
2q•lt ), rapidly traverses the range of values lying between the 
outermost slanting lines in Fig. 3. The slanting line corre- 
sponding to the instantaneous value of qs{t) therefore 
sweeps rapidly across the F {q) curve, and if we follow its 
point of intersection with that curve we see that during the 
opening or closing of the reed a brief pulse in f(t•) is generat- 
ed. Its peak value corresponds to the peak value of the F(q) 
curve. The pulse in. f{t ) adds itself to the smeared-out, in- 
coming pressure jump in such a way as to steepen the pres- 
sure jump as it sets out again from the reed [see Eq. (8)]. The 
steepening can again be seen in Fig. 5{b), for instance by 
comparing the shapes of the incoming and outgoing pressure 
jumps joined by the vertical, finely dotted line in the figure. 

The degree of squareness or roundedness of the periodic 
q{t ) waveform, to which the oscillation settles down, is thus 
determined by a competition between the smearing de- 
scribed by the reflection function r(t ), and the steepening due 
to the precisely timed puffs of air past the reed represented 
by.the Pulses inf(t 1- A corresponding picture was put for- 
ward in 1968 by Cremer and Lazarus •s'39 in the context of 
the bowed string, which as we shall see shortly is closely 
analogous. It provides, indeed, an even clearer example of 
the steepening process. These ideas played an important role 
in later theoretical developments, •z"s"9'nø-4• some of which 
will be described in the next section and in Appendix B. 

A noteworthy feature of Fig. 5 is the rapidity with 
which the amplitude saturates at its final, steady-state value, 
in both eases shown. Such very short starting transients re- 
call the metallic hardness of attack which is possible atfortis- 
simo levels on a real clarinet. The fast buildup of the oscilla- 
tion, together with the fact that it saturates at amplitudes for 
which the maximum positive excursion ofq{t } is close to'the 
value p, can be understood from energy considerations, as 
follows. 

In order for self-sustained oscillations to be possible, the 
mean rate of working W at which energy is supplied to the 
linear element of the model through the nonlinear element 
must be positive, by a sufficient margin to balance losses 
from the linear element. For a periodic oscillation the mean 
rate of working is 

W= {q{t }f{t )) = (q{t )F { q{t }} }, {21) 

where the angle brackets denote the time average over one 
period. Positive values of W are made possible by the exis- 
tence of the positive-sloping part of the F{q} curve, which 
means that it is possible for q(t ) and F [q{t )} to be positively 
correlated in {21). This is sometimes described by saying that 
the nonlinear element has "negative resistance." Now the 
waveforms ofq(t ) andf(t ) = F [q(t }} in Fig. 5 show that the 
correlation is very low in the final steady state, so that the 
value of W, although just positive, is numerically much 
smaller than a product of typical magnitudes off and q. This 
condition that the correlation be positive, but only just, lar- 
gely determines the saturation amplitude under the circum- 
stances of Fig. 5. 

The steady oscillations are, moreover, very stable. This 
is because of the finite negative slope of F(q) at q = p, repre- 
senting locally apositive resistance. If the maximum positive 
excursion ofq(t ) were to go even slightly beyond the valuep, 
then f and q would become negatively correlated and the 
oscillation would immediately decay. If on the other hand 
the positive excursion of q(t) fell significantly short of the 
valuep, then values of Wwould be closer to the product of 
typical magnitudes off and q and therefore much larger than 
the steady-state value. The amplitude would then grow ra- 
pidly. Such large values of Wactually occur during the start- 
ing transient, as can be seen by visually correlating the firgt 
two cycles of the q waveform with those of thef waveform in 
Fig. 5(a) or 5(b). This accounts for the large initial rate at 
which the energy builds up. in afortissimo attack. 

One of the glories of the clarinet as a musical instrument 
lies in the ease with which a smooth tone can be maintained 

at extremepianissimo levels, in the low and middle registers. 
As is well known, this can be accounted for in terms of the 
control the player has over the operating point on the F {q) 
curve about which the oscillations take place, 2 and the stabil- 
ity, easily demonstrable in the laboratory, •ø'44 of very small 
amplitude, "threshold" oscillations centered on a point just 
to the left of maximum F {q), where the slope has just become 
positive, or the resistance just negative. For a given embou- 
chure, the player can center the oscillation on this part of the 
F {q) curve merely by'decreasing the blowing pressurep to an 
appropriate value. This corresponds to sliding the F {q} curve 
rigidly to the left in Fig. 3, keeping k and p -- q½ constant, 
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until the maximum in F(q) falls only just to the right of 
q=O. 

This form of control is effective because the mean value 

of q itseft cannot drift very far from zero. For the model it 
cannot change at all, for periodic oscillations, since provided 
(6) holds we can show from the model equations that the 
mean value 

(q(t)) = 0. 122) 

To derive this result, note first that for any periodic function 

(t)) = (t)) 

= (q• {t )) fo•r{t ) dt = -- (q• (t)). {23} 
The first step follows from the assumption that • {t ) is period- 
ic, and can be verified by reversing the order of integration, 
i.e,, by interchanging the average over t with the integration 
over t ', the variable of integration in the convolution. The 
second step follows immediately from the fact that (• {t }) is a 
constant, and the last step from {6), $r(t }dt = -- I. Applying 
Eq.' {23} to Eq. (11}, with •=q+Z.f, we get 
= -- (q) -- Z (f). Upon substituting this expression for 
(qn) into the time average of{10) we obtain {22), (q) = 0. 

Now it is an interesting fact that simulations near 
threshold based on the parabola {20} do not exhibit the stable 
amplitude dependence upon blowing pressure found in the 
real instrument under normal playing conditions, when the 
embouchure is not too loose? lfp is decreased below its 
threshold value, then the oscillations die out as expected. 
However, ifp is increased again until small oscillations just 
grow, then they continue growing until an amplitude is 
reached at which the model reed begins to close. If small- 
amplitude oscillations in real clarinets behaved in such an 
unstable manner, it would require superhuman control to 
elicit the pianissimo sounds which can, in fact, easily be ob- 
tained even by a novice. 

This unrealistic behavior of the model can be traced to 

the unrealistic symmetry of the parabola {20). The experi- 
ments of Backus •ø on real clarinets suggest an F{q} curve 
{Fig. 21.4 of Ref. 2) which is much steeper near q = p than it 
is near q = qt. We could easily use an experimentally deter- 
mined F (q), but at the present level of idealization it seems 

adequate to model the asymmetry simply ..by replacing (20) 
with a cubic in q such as 

F{ q) = K (p -- q)(q -- qc)(q + P -- 2qc), {24} 

where K is another positive constant. With•24), or any other 
similarly asymmetric curve in place of (20}, the model does 
indeed exhibit stable, small-amplitude, nearly sinusoidal os- 
cillations, when p is chosen so that the maximum in F 
falls just to the right ofq = 0. The stabilization is easily un- 
derstood in terms of reduced negative resistance as ampli- 
tude increases, or more precisely in terms of the effect of the 
cubic term -- Kq • in 124) upon the rate of working W given 
by 121). It introduces a new term -- K (qn) into the right- 
hand side of (21), which is always negative. The dissipation 
rate in the linear element is proportional to (q2) as ampli- 
tude varies, and so the negative term -- K (qn) always acts to 
diminish the value of (21), relative to the linear dissipation 

rate, as oscillation amplitudes increase from zero. It is this 
that allows a stable balance to be reached within the contin- 

uous part of the F(q) curve. 
By using a fast Fourier or other routine to Fourier-ana- 

lyze the waveform ofq(t ), one can simulate the internal pres- 
sure spectrum that would be measured via a probe micro- 
phone in the mouthpiece of a real clarinet. It is easy to check 
that the model reproduces the qualitative behavior of the 
harmonics shown in Fig. 21.6B of Ref. 2, for instance the 
proportionality of the third harmonic to the cube of the fun- 
damental asp is varied near the threshold. The even harmon- 
ics are relatively wealS, but are not, and cannot be, exactly 
zero, because of the small contribution fromf(t ) in Eq. {8). 
The internal spectrum of a real clarinet likewise has weak, 
but nonzero, even harmonics. It shofild be noted that the 
even harmonics would be relatively less weak in the sound 
radiated from a real clarinet, in comparison to its internal 
spectrum, for reasons pointed out by Benade (Ref. 2, Sec. 
22.4}. 

C. Pitch flattening in the bowed string 

The main nonlinearity in bowed-string dynamics comes 
from the behavior of the frictional force exerted by the bow 
on the string. The nonlinearity is even more severe than in 
the clarinet. One consequence is a phenomenon mentioned 
briefly in the introduction, namely a systematic shift of the 
playing frequency away from any plausible "compromise" 
frequency which might have been expected from an incau- 
tious application of frequency-domain ideas to the normal- 
mode frequencies of the string. The shift occurs whenever 
the normal forcef• between bow and string exceeds a certain 
limit, and is downwards, corresponding to a flattening of the 
pitch. The cause of this interesting phenomenon was not elu- 
cidated, to our knowledge, until quite recently. •8'•0 

Our simple model can be used as it stands to demon- 
strate the phenomenon, since the same model equations turn 
out to comprise an analog of the bowed string. The analogy is 
a close one if the string is symmetrical and bowed exactly at 
its midpoint. More generally, one has to allow inter alia for 
reflection from two ends rather than one; details are given in 
Appendix B. But for a symmetrically terminated string 
bowed at its midpoint, the two reflections act as one, each 
half of the string being a mirror image of the other at any 
instant. The reader who wants to try midpoint bowing on a 
real instrument should locate the midpoint accurately, de- 
grease the string if necessary, and bow lightly. on some in- 
struments, stopped strings respond better to midpoint bow- 
ing than open strings. That the result sometimes sounds a 
little bit like a faint clarinet may or may not occasion sur- 
prise, depending on the extent to which one believes that 
harmonic content determines tone quality. 

The frictional force exerted by the bow on the string 
plays the same role, in the model, as did the flow rate into the 
clarinet mouthpiece. It is therefore denoted by the same 
symbolf(t ). The symbols qo and q, now represent the trans- 
verse string velocities associated with waves traveling out 
from, and in towards, the bow. Then Eq. (8) applies as before, 
provided we reinterpret the constant of proportionality Z as 
equal to half the wave admittance Yofthe string. It is admit- 
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tance and not impedance, becausef is now force and not flow 
rate. Readers'who prefer to use the symbol Y for admittance 
are recommended to substitute «Y for Z in Eqs. (8) if., while 
reading this section• Note that iffwere zero then 18) would 
imply that qo (t) = qi(t ), expressing the fact that the outgoing 
wave in each half of the string would be identical to the 
incoming wave from the opposite half if the bow were re- 
moved. 

Equation (4) relates qi(t ) to past values of qo(t ), as be- 
fore, via a reflection function r(t ) with a negative main pulse. 
This pulse is much narrower for a string of typical length 
than for the bore of a wind instrument. For demonstration 

purposes we continue to use the simplified Gaussian form 
(18) for r(t ), although as before r(t ) could easily be made more 
realistic. 4s Note that T in Eq. (18) is the time of a "round 
trip" over one ha/f of the string, not the true round trip over 
both halves. An advantage of(18) for present purposes is that 
the almost precisely symmetric shape ofr(t ) implies that the 
model string has an almost precisely harmonic series of natu- 
ral frequencies. Thus there is no difficulty in deciding 
whether or not the model is exhibiting a nonlinear frequency 
shift, in the sense asserted. 

The sum q(t ) of qo(t ) and qil t ) given by (7) now repre- 
sents the transverse string velocity at the bow. The relations 
(6) and (22) still hold, and now express the fact that the string 
cannot drift continually sideways, which is true when its 
terminations are modeled in any realistic way. 46 The usual 
assumption about the friction force, 4ø'43'47'4s which states 
that it depends only on the velocity of the string relative to 
the bow, implies a relation betweenf and q precisely of the 
form (1). In summary, therefore, all the model equations, 
including the final set (1), (10), and (11), are the same as be- 
fore. 

The qualitative appearance of F (q) suggested by exist- 
ing laboratory evidence 43'47'48 is shown by the heavy curve in 
Fig. 6. From a mathematical viewpoint this function is vi- 

FIG. 6. Heavy curve: Nonlinear characteristic F(q} for the bowed string, 
idealizing the way in which the frictional forcef exerted on the string varies 
with relative velocity q --p, for a bow being pulled or pushed with a given 
speed p and a given normal bow foreeft. The height f,, ,, of the curve is 
proportional tofo. Sloping straight lines: Eq. (10} for three different values 
ofqn; the middle one has qn = 0. The shaded region indicates the range of 
values ofqk over which the solution Iq, f) ofll) and •10• is ambiguous. 

ciously nonlinear. It has certain features in common with its 
counterpart for the clarinet. It again goes through zero at a 
point q ----p, say, after attaining a maximum valuef•, say, 
for q just less than p (infinitesimally less, for practical pur- 
poses, but see Ref. 48 and Appendix B of Ref. 19); p now 
represents the velocity at which the bow is being pushed or 
pulled past the string. For the player, varying p is again an 
important way of controlling loudness. 

Points on the very steep portion of the F(q) curve, 
where q is very close top, correspond to the string "sticking" 
to the bow. In the 'sticking state, exceedingly small depar- 
tures from zero relative motion are resisted by relatively 
large frictional forces. For practical purposes the slope may 
be regarded as infinite. The maximum value at the peak is 
roughly proportional to the normal force f• between bow 
and string, with a proportionality coefficient of the order of 
unity for rosined surfaces. Points on the F (q) curve to the left 
of the maximum represent states of "slipping" with the 
string moving backwards relative to the bow. Values well to 
the left of the maximum are typically of the order of 0.2lb. 

For practical values off b, the maximum positive slope 
oftheF (q) curve often exceeds Z - • ( = 2/Y), the slope of the 
straight line representing Eq. I10). An ambiguity then arises 
in the solution of(1) and {10) for given qh. This was pointed 
out (although not resolved) by Friedlander 36 and by Keller? 
The straight line representing Eq. (10) intersects F (q) at three 
points, not one, whenever it falls within the shaded regio n in 
Fig. 6. A careful analysis of the consequences may be found 
in Ref. 19, where it is shown that the physically correct reso- 
lution of the ambiguity is expressed by i;he following two 
statements: 

(1) The system will never get into a state corresponding 
to the middle of the three intersections. 

(2} The system follows a given intersection continuously 
as long as it can. 

ß For instance if the state o• the system is currently one of 
sticking, with the intersection (q,f) on the infinitely steep 
portion of the curve F(q), then that state will persist (in accor- 
dance with the intuitive idea of "sticking") until qh moves 
beyond the left-hand edge of the shaded region. Only then 
will the system jump to a state of slipping. We may say that 
the bow "releases" the string. nø Once established, slipping 
will persist in its tuna until qn leaves the right-hand edge of 
the shaded region, whereupon a smaller jump will occur, 
back to the sticking state: the bow "captures" the string. In 
summary, the sequence of states of the bow-string contact, as 
q• (t } oscillates back and forth across the horizontal axis in 
Fig. 6, exhibits precisely the hysteregis which one might have 
anticipated intuitively. This is very convenient for program- 
ming, since the initial guess for q when solving (1) and (10) for 
given qn can always be taken as the value ofq at the previous 
time step, and the nearest intersection found. We shall refer 
to statements (1) and (2) above as the "hysteresis rule." 

During the periodic oscillation, the nonlinear interac- 
tion between bow and string compensates for the smearing of 
the waveform described by r(t ), in almost the same way as 
already described for the clarinet. Release of the string'corre- 
sponds to closing of the reed, and capture of the string to 
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opening of the reed. The amplitude of steady oscillations is 
determined in essentially the same way, by the shape ofF(q) 
and in'particular by the location of the point q =p, which is 
determined by the bow speed p. However, the waveform- 
steepening effect of the nonlinear interaction takes a more 
extreme form whenever hysteresis occurs. Parts of the Wave- 
forms of q and f become infinitely steep, according to this 
model, because of the hysteretical jumps in q and f as the 
straight line representing Eq. (10) sweeps back and forth 
across the F (q) curve. Moreover, the hysteresis rule implies 
that the jumps are bigger during release than they are during 
capture. It is this asymmetry that leads to the downward 
frequency shift, or flattening effect.' The release process in- 
troduces a slight delay into the round trip time of the propa- 
gating disturbance, which is not fully compensated at cap- 
ture. How this works in detail will be explained below. 

The amount of hysteresis increases as normal bow force 
fb is increased, because the FIq) curve then becomes taller 
and the shaded region wider. The flattening effect therefore 
increases withf b, for a given type of oscillation. It also in- 
creases with the width ofr(t ), since incoming signals are then 
smeared more strongly and there is more scope for perturb- 
ing their timing. Precisely these effects occur both in the 
simulations and on real instruments. On a real violin, audible 
flattening is easy to demonstrate at low bow speeds when the 
bow is pressed sufficiently hard onto the string. It becomes 
audible well before the complete breakdown of the musical 
note--•specially when playing high notes on a thick string 
such as the G string, corresponding to relatively broader r(t ). 

In practice an audible amount of flattening makes ade- 
quate control of pitch, and also of tone quality, impossible 
for the player. This sets one of the more important limits on 
the musically useful range of normal bow force f'b. In the 
light of known results in psychoacoustics, such as those 
brought out in the perceptive discussions by Boomsliter and 
Creel 22 and by Benade, 2 it can be anticipated that some of the 
rapid and irregular frequency fluctuations, which would be 
caused by the flattening effect under slightly unsteady bow- 
ing conditions, might be heard not as pitch fluctuations but 
as changes in tone quality. From the musician's viewpoint, it 
is undoubtedly a fact that subjective tone quality tends to 
deteriorate as bow force is increased, even before flattening 
becomes audible as such; students of violin playing are ex- 
horted not to "force the tone." 

Figure 7 shows the q(t) and f(t) waveforms from a 
steady-state solution to Eqs. (1), (10), and (11) which clearly 
demonstrates the flattening effect.. The parameter values are 
given in the caption. The oscillations were started from rest, 
in the same way as for the clarinet [see below Eq. (20)]. The 
discontinuous jumps in q(t) andf (t) indicating hysteretical 
behavior are shown dashed in the figure; note that they are 
respectively larger and smaller for the falling and rising parts 
of the q{t) waveform, corresponding to the larger jumps at 
release and the smaller ones at capture. The accompanying 
pulses inf(t ) have correspondingly disparate shapes. If there 
were no hysteresis, the release and capture pulses would be 
mirror images of each other, to within numerical accuracy, 
as are their counterparts in Fig. 5. This follows, in the ab- 
sence of hysteresis, from the symmetry of our idealized re- 

capture 

FIG. 7. Waveforms ofq(t } andf(t } for a steady-state oscillation, showing a 
nonlinear frequency shift or "flattening effect" due to hysteresis. The oscil- 
lation period is 268 time steps, or 4.7% greater than the string's natural 
period 2 T (256 time steps}. The waveforms were obtained by solving Eqs. ( 1 }, 
110•, and (11 • with the F(q} shown in Fig. 6, and imposing the hysteresis rule 
to resolve the ambiguity in the shaded region. The left-hand curved part of 
F(q) has the equation FIq) = 1/(1.5 - q), and the straight part hasp = 1, so 
that fm• ---- 2, in units such that Z ---- !. The reflection function has full 
width (i 9• equal to 40% of T, or i 9.1% of one period; a in Eq. { 18) is deter- 
mine d by the trapezoidal approximation to 16). 

fleetion function. The fine dashed extensions to the actual, 
hysteretical "capture" pulses inf(t ) are intended to indicate 
that the point (q,f) may, if desired, be thought of as instanta- 
neously traversing the peak F(q) value as suggested in Fig. 3 
of Ref. 40 and in Fig. 6 of Ref. 15, even though the jump 
occupies zero time and has no dynamical significance for the 
model? 

In this demonstration case, the effects of hysteresis are 
enhanced by the use of a very broad reflection function •(t ), 
and the flattening effect is quite large. The frequency of oscil- 
lation is 4.7% less than the gravest normal-mode frequency, 
a difference well outside numerical errors. We have flatten- 

ing by nearly a semitone, "despite" the fact that the linear 
element in this case has an odd harmonic series of normal- 

mode frequencies 1/2I', 3/2T, 5/2T, etc. (to within numeri- 
cal errors), because of the symmetry of•(t ). The fact that the 
normal-mode frequencies comprise an accurately harmonic 
series can be demonstrated directly, by running the simula- 
tion and then continuing it withf set to zero. This gives a nice 
classroom demonstration of the free decay of the string vi- 
brations when the bow is suddenly raised [cf. the description 
following Eq. (6) in Ref. 40]. As soon asfis switched off, the 
frequency jumps up to a value equal to 1/2T. The waveform 
becomes more and more rounded as the higher modes decay 
relative to the lower ones, but shows no dispersion, indicat- 
ing that all the modes remain in the same phase relation to 
each other when allowed to decay freely---a situation in 
which an incautious use of frequency-domain ideas might 
have predicted that nonlinear self-excitation of the form (1) 
"should have" produced frequency I/2T or some integer 
multiple of it. 

To see in detail how the flattening effect works, we need 
only visualize, as before, the consequences of the graphical 
construction implied by Eqs. (1) and (10), as the straight line 
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representing Eq. (10) sweeps back and forth across the F(q) 
curve between its extreme positions, labeled (i) and (iii) in 
Fig. 6. During release, for instance, when the direction of 
travel in Fig. 6 is from position {iii} to position {i), qh has a 
time dependence like that indicated schematically by the 
dashed curve in Fig. 8(a}. The transition between extreme 
values is smooth and the rate of change finite because, as 
noted earlier, qh is just twice qi and therefore has the shape of 
the smeared-out, inverted velocity jump returning to the 
bow from each end of the string. The corresponding q is 
indicated by the solid curve. As qn begins its negative swing, 
sticking is prolonged while the point (q,f) ascends the infi- 
nitely sloping part of the F (q) curve, until the discontinutus 
jump to a state of slipping occurs. This introduces not only 
the discontinuity in q, but also an obvious delay in the timing 
of the whole transition in q, relative to that in qh- 

A similar delay appears in the outgoing velocity signal 
qo, which is even more strongly affected by the nonlinear 
interaction. This can be seen from the findy dotted curve in 
Fig. 8(a), which shows 2%. Its relation to the other two 
curves is given by 

2qo =q + (q--qh), 

a consequence of(10) and the first of(9). That is, the graph of 
2qo is as far above the q curve as q• is below it. It is clear by 
inspection of the graph of 2qo that the nonlinearly induced 
delay will not be eliminated by the subsequent convolution 
with r(t ). [L-w•use ofthe symmetric shape ofr(t ), the convolu- 
tion can only smooth the transition and not make it come 
earlier. In fact the reverse occurs, since the convolution 
smears the positive peak in the 2% curve as well as the main 
transition. This yields a smooth curve with a smaller peak 
and an increaved delay. When this smoothed transition re- 
turns, inverted, to the bow, a little more than half a cycle 
later, it has a shape like that of the dashed curve in Fig. 8(b). 

Figure 8(b), in turn, summarizes what happens at cap- 
ture. The same constructions, with due attention to the hys- 
teresis rule, give the resulting q and qo curves, again shown 
solid and finely dotted. The nonlinear interaction now pro- 
duces an advance in the timing of the transition, rather than 
a delay. However, because of hysteresis, the advance in- 
duced at capture is smaller in magnitude than the delay in- 

duced at release. This explains the overall lengthening of the 
period. 

D. Subharmonics, starting transients, and other bowed- 
string phenomena 

Our simple model can be used to demonstrate several 
other nonlinear phenomena characteristic of the bowed 
string. One such phenomenon is the tendency for subhar- 
monic patterns to occur in starting transients, recently 
pointed out by Cremer. sø For midpoint bowing one expects 
patterns related to the second subharmonic, of period twice 
the string's fundamental period 2T. Figure 9 shows an exam- 
ple of a decaying second subharmonic pattern, produced by 
the present model with the same broad reflection function 
and the same initial conditions as before, but with a gentler 
F(q} giving no hysteresis Isee caption). Decaying subharmon- 
ics play an important role in real starting transients, and in 
other transient phenomena. (An example observed in the 
laboratory may be seen in Fig. 7 of Ref. 41)./V th subharmon- 
ics are liable to occur when the string is bowed near the point 
I/N th of the length of the string from one end. More precise- 
ly, it can be shown by a simple geometrical argument 4• that 
N th subharmonics are possible when the bow is placed 
between the points 1/(N+ I) and I/(N-- l) from the end, 
where N = 3, 4, 5 ..... 

It does not take much experimenting with starting tran- 
sients before a significant difference between the behavior of 
the model and that of the real bowed string becomes appar- 
ent. As soon as realistically narrow reflection functions are 
used, transients such as the initial subharmonic in Fig. 9 fail 
to die out, and stable, steady oscillations become practically 
impossible to obtain from most initial conditions. This con- 
trasts with the very stable behavior of the model clarinet 
remarked on earlier, and with the adequately controllable 
behavior of real bowed strings. The parabola (20) behaves 
stably, for large-amplitude oscillations, even when it is suffi- 
ciently tall or narrow to cause hysteresis, and this actually 
provides the simplest way of demonstrating the dependence 

+p- 

•"• 2qo q 

FIG. 8. Sketches showing details in the waveforms, (a) during release, and 
(b) during capture, of 7.q,,(t ) (shown finely dotted), q(t) (solid), and q,,(t) 
= 2q,{t ) Idashed), when hysteresis occurs. See text. 

-p- 
-• 2T •- 

i[und. periodl 

FIG. 9. First sixteen cycles ofq(t ) in a starting transient, showing a subhar- 
monic pattern. This waveform was obtained with the same parameter val- 
ues as in Fig. 7, except that the curved part ofF(q) is given by F(ql = 2/ 
13 -- q). The straight part again hasp = I. (This is a shallower shape than in 
Fig. 6, and exhibits no hysteresis.) The time step At is T/32, not our stan- 
dard value T/128. The reflection function again has width (19} equal to 40% 
ofT. 

1334 J. Acoust. Soc. Am., Vol. 74, No. 5, November 1983 Mcintyre et al.: Oscillations of musical instruments 1334 

Downloaded 06 Jan 2011 to 131.111.17.178. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



of the flattening effect on the width ofr(t ) with minimal pro- 
gramming effort. 

As these observations suggest, the infinite slope off (q) 
at q ----p in Fig. 6 is involved in the unstable behavior of the 
model. Indeed ifr(t ) is sufficiently narrow, while the sticking 
part of F(q) has infinite slope and the slipping part finite 
positive slope as in Fig. 6, it can be shown that even if the 
simplest regime of steady oscillation were to be set up in the 
model, that regime would be unstable to small disturbances. 
The instability was discovered in 1953 by Friedlander 36 for 
the case of infinitely narrow r(t }. It takes the form of a self- 
excited second subharmonic, 4• which may itself become un- 
stable to a fourth subharmonic, and so on. Such sequences of 
period doubling bifurcations have recently been studied in- 
tensively in other contexts (see Appendix A}. The corre- 
sponding model for bowing near the l/Nth point exhibits 
period N-tupling, ifN is a prime number? • 

This unrealistic behavior does not imply that our treat- 
ment of friction, as such, is seriously unrealistic. Sticking is 
undoubtedly a physical reality, as many experiments have 
shown clearly. The most important missing ingredient is an 
entirely different aspect of real string motion, namely the 
torsional degree of freedom. It is shown in Appendix B that 
the effects of torsional string motion can be partially taken 
into account, without changing the model equations or the 
computer program, simply by replacing the infinitely slop- 
ing section of the F (q} curve by a section having finite nega- 
tive slope. 15 This is just what is needed in order to get realis- 
tic, stable transient behavior with narrow r(tl. More 
precisely, the whole friction curve is sheared horizontally, as 
illustrated in Fig. 10, in such a way as to impart a negative 
slope 2/Y' to the sticking section, where Y' is the torsional 
wave admittance of the string referred to velocity at the sur- 
face of the string. This simple device, albeit not allowing for 

FIG. 10. Solid curve: modified nonlinear characteristic G(q}, giving greater 
stability ofoseillation. It is defined by GIq} = FIq + «Y•f}, where Yø is the 
characteristic adrnittanee of the string for torsional waves, here taken for 
illustration as 0.4Y, a value well within the typical range. 4ø'4• The dashed 
curve is the corresponding FIq}, identical to that plotted in Fig. 6. Replacing 
F(q} by G {q} in the model makes some allowance for the seaUering of trans- 
verse into torsional waves at the bow [Eq. {BI 6}]. Note incidentally that this 
gives rise to a larger shaded region and greater hysteresis. •s 

torsional reflections, does incorporate into the model the 
scattering of incoming transverse waves into torsional waves 
at the sticking bow. 43'52 The scattering into torsional waves 
is by far the most effective mechanism bringing about the 
decay of subharmonics in real strings. 4• 

Another characteristic bowed-string phenomenon is 
the effect of pressing so hard with the bow that no musical 
note is produced anywhere near the fundamental frequency 
of the string. This can be simulated simply by increasingfb 
and therefore the maximum value of F (q} beyond the limit 
corresponding to the Schelleng maximum bow force? Then 
the velocity jumps returning to the bow are not always 
strong enough to cause release. Both the real string and the 
model can produce under these conditions a variety of peri- 
odic motions with periods much longer than any natural 
period of the string, as well as apparently aperiodic motions, 
resembling the particular type of chaotic behavior which in 
real instruments produces the raucous, scrunching sound 
sometimes made inadvertently by novice players. 

The model is easily extended to describe bowing at any 
point of an asymmetrically terminated string. Appendix B 
describes the computationally most efficient way of doing 
this. The model will then simulate among many other things 
the celebrated Helmholtz regime, which is actually simpler 
than the example of Fig. 7 in that only one velocity jump 
propagates on the entire string, alternately triggering cap- 
ture and release as it shuttles back and forth past the bow. In 
the process, backscattered "secondary waves "38'39'4ø'43'52 are 
generated by the accompanying pulses inf(t I, and then rever- 
berate in each section of the string (Ref. 41, Fig. 8 I. The 
secondary waves have no separate existence in the symmetri- 
cal, midpoint case. One can also demonstrate a great variety 
of other phenomena, including N th subharmonics, period N- 
tupling, various "double flyback" motions, ]8 and Raman's 
"higher types" of which our midpoint example, with two 
propagating velocity jumps, is the simplest case? Contrary 
to what is sometimes said, Raman's higher types are not 
unimportant musically. 2]'s• Certain of them produce a fas- 
cinatingly luminescent sound and are sometimes used, con- 
sciously or unconsciously, for coloristic effects in sut tasto 
playing. These particular types tend to be evoked when the 
bow is near, but not at a point 1/Nth of the length of the 
string from the bridge, typically when N = 3, 4, or 5. The 
problem of describing and classifying the higher types has 
recently been approached in a new and interesting way by 
Lawergren, • who uses the term "S motion" to denote the 
cases just mentioned. General surveys of bowed-string dy- 
namics are given in Refs. 21 and 40, and Ref. 43 gives a more 
detailed introduction to the subject. 

E. Simulating a flute, recorder, or organ pipe 

A flue organ pipe open at its far end oscillates with 
frequency close to 1/Tor C/2L, as does a flute or recorder 
(blockflute} when playing its lowest note. This is an octave 
higher than the clarinet's I/2T. If a clarinet is played with a 
flute or recorder mouthpiece substituted, the lowest note 
goes up about an octave? To model what happens we must 
take account not only of the altered acoustic conditions at 
the mouthpiece, but also of the fact that an air jet blowing 
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across a hole excites acoustic fluctuations, and is affected by 
them, in an entirely different'way from a reed. The geometry 
of a flue organ pipe is sketched in Fig. 11. 

Surprising as it may seem, the same model equations 
can yet again be shown to be relevant--after making one 
small but crucial modification to Eq. (1) to be described 
shortly. In fact the model then appears capable of represent- 
ing the physical situation to a remarkably good approxima- 
tion, in the interesting case of large-amplitude oscillations 
near a strong pipe resonance, about which a great deal is 
known experimentally.2a'5? Of coursef (t } and q(t ) again have 
quite different physical meanings, to be stated shortly, and 
the nonlinear characteristic F(q} has an entirely different 
shape. 

A full justification of the model equations and their 
physical interpretation lies beyond the scope of this paper. It 
would require a lengthy digression, especially as some of the 
fluid-dynamical questions involved are controversial. Some 
further discussion will be given in a forthcoming paperil s 
Here we merely present the results, with brief motivation, 
and then note that the model equations yield excellent simu- 
lations of the observed waveforms and phase relations for a 
large-amplitude oscillation. "Large amplitude" means that 
the jet switches fully into and out of the pipe. 

The modification needed in Eq. (1 } arises from the finite 
speed of hydrodynamical disturbances carried along the jet. 
These disturbances are the well-known sinuous instability 
waves first studied by Rayleigh in connection with "sensitive 
flames" and related phenomena? They travel far more 
slowly than the speed of sound, usually at speeds of the order 
of half the maximum flow speed in the jetfi 7'•-•2 This gives 
rise to a significant time delay in the process symbolized by 
the left-hand box in Fig. 1. The importance of the delay is 
well established experimentally and it is one of the param- 
eters varied by flute players in order to control their instru- 
ments. 63 One of its effects is a frequency shift, quite different 
in nature from the intrinsically nonlinear frequency shift dis- 
cussed in Sec. IIC: it causes the familiar sharpening of pitch 

jet 

FIG. I 1. Flue organ pipe (top and bottom ends 
shown} with the jet blowing across the mouth, 
after Cremer and Ising? 

as the instrument is blown harder. To model it in the sim- 

plest possible way, Eq. { 1 } is replaced by a relation of the form 

f{t } = F {q{t -- r)}, 125) 

where r, the delay, is taken to be a positive constant for given 
playing conditions. We notice that this makes the computer 
program for solving IlO), {11}, and {25} even simpler than 
before, since at each time step the right hand side of {25) is 
already known in terms of past history, without reference to 
(10). Therefore (10) need not be solved simultaneously with 
(25), as it had to be with {1). 

The physical meaning of q(t} in this context is that it 
measures the acoustic displacement of air into and out of the 
hole across which the jet is blowing. With the example of the 
flue organ pipe in mind, we shall call this hole the "mouth" 
of the pipe. Flute players call it the "embouchure hole." For 
definiteness we take q to be the volume displacement: it has 
dimensions of length cubed. The corresponding acoustic vol- 
ume flow rate through the mouth is dq/dt. Positive q will be 
taken to correspond to displacement into the pipe. Because 
of the new meaning of q, the sign ofthe.reflection function r(t ) 
is now positive for an open pipe, in the sense that Eq. (6) is 
replaced by 

.4 = r(t ) dt = + 1. 

An open end reflects negatively in terms of pressure, but 
positively in terms of acoustic flow rate or displacement. [A 
closed pipe can be modeled by reverting to F.q. (6) and taking 
.4 = -- 1.] Strictly speaking, r(t } really represents the cumu- 
lative effects of reflection from both ends, as well as the ef- ß 
feets of acoustic boundary-layer dissipation. For the sake of 
definiteness we may think ofqi(t) in Eq. (4) as representing 
the incoming wave just after it has been re-reflected back up 
the pipe from the mouth, in a hypothetical situation where 
f{t )is zero. That is, r(t ) represents the total smearing of a pulse 
during a complete round trip. The reflection from the mouth 
of the pipe may well contribute noticeably to the total smear- 
ing of the pulse? 

The physical meaning off(t } is the volume flow rate in 
that part of the jet which is blowing into the pipe at time t, 
apart from an additive constant chosen such that the time- 
averaged value 

(f(t }) = 0 {27) 
for periodic oscillations. The relation (27) is an exact proper- 
ty of the model, as applied to open pipes, and follows from 
(26) in the same way as (22) followed from {6}. The term Z fit ) 
in Eq. (8} represents the Cremer-Ising model for the excita- 
tion of acoustic disturbances by the jet. The experimental 
evidence suggests that this is a good model in the near-reso- 
natat cases studied by Coltman 23 and by Cremer and Ising? 
It may be less accurate for strongly blown pipes sounding 
above resonance. 62 Equation {8), or more conventionally its 
derivative with respect to time, may be obtained from a con- 
sideration of the "excitation" portion of Coltman's 0976) 
equivalent circuit {Ref. 23, Fig. 9); f{t ) and dq{t )/dt corre- 
spond, respectively, to i; and --it in his notation. Colt- 
man's equivalent circuit [with the understanding that fix,1 
in his Eq. (1}] represents an aeroaeoustically consistent refin- 
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ement ss of Cremer and Ising's original model, itseffbased on 
a hypothesis due to Helmholtz. The parameter Z in Eq. {8) is 
no longer a wave impedance or admittance; it has the dimen- 
sions of time and equals the time for a sound wave to travel a 
distance of the same order as the end correction at the mouth 
of the pipe. It should be cautioned that in the real world the 
value of Z is not precisely equal to a standard end correction 
divided by C, nor is it accurately a constant. There is a nu- 
merical factor which depends not only on the geometry of 
the mouth and lip but also in an ill-understood way on the 
width and speed of the jet, and on the amplitude of the waves 
on the jet. 

An appropriate shape for F(q) in Eq. (25} is a monotonic 
curve like that shown in Fig. 12, with horizontal asymptotes 
at each extremity. One extremity of the profile relates to the 
condition in which all of the jet is blowing into the pipe, and 
the other extremity to the opposite condition in which the jet 
is deflected entirely outside it. Following Fletcher and 
Douglas, 6• we take 

F{q) ---- h + k tanh(lq) (28) 
in the simulations, where h, k, and I are constants, with 1 
positive and k negative. With the foregoing definitions, it is 
found experimentally that appropriate values for the delay r 
range from just over half an osdllation period (when the pipe 
is blown gently, and sounds below its resonant frequency), 
through half a period (at resonance, the regime studied in 
detail by Cremer and lsing s? and Coltman23), to just over a 
quarter of a period (when it is blown hard and plays 
sharp63'•). In the more softly blown regimes, the value off is 
of the order of the time for a Rayleigh instability wave to 
travel to the lip, from the base of the jet where the jet is most 
acoustically sensitive. so In hard-blown regimes the behavior 
of the jet is less simple; a good discussion of the theoretical 
and experimental evidence on jet behavior may be found in 
the papers by Fletcher and Thwaitesfi ø-•2 The reason for 
taking k negative in (28) is explained in Refs. 3, 57, 60, and 
62: when jet instability is important the response of the jet to 
q(t ) is almost the same as ifq were zero but the slit from which 
the jet emerges was moving from side to side in the opposite 
sense, 67 with displacement -- q(t ). 

FIG. 12. Nonlinear characteristic F(q} for a flute-like oscillator [Eq. (25)]. 
The model assumes, see (29}, that the value off is determined by the value of 
q at a time r in the past, crudely imitating the propagation delay for Ray- 
leigh instability waves on the jet. 

The assumption, implicit in the assumed form of (25}, 
that jet behavior depends only on q(t ), is itself valid provided 
that typical magnitudes off(t ) and dq{t )/dt satisfy 

f(t )•dq{t )/dt. {29) 

In real organ pipes there is a local contribution, --f{t }, to the 
volume flux in the mouth, which (25) neglects so far as its 
effect on the base of the jet is concerned. This is a good ap- 
proximation in cases of large-amplitude pipe oscillations 
near resonance. The neglected contribution represents a lo- 
cal, irrotational backflow out of the mouth, which occurs for 
reasons of mass conservation whenever the jet blows into the 
mouth. It would be the only irrotational contribution to the 
flow in the mouth if the interior of the pipe were blocked 
making dq(t }/dt zeroil s The backflow and the effedtive mass- 
acceleration associated with it are actually an essential part 
of the Cremer-Ising mechanism expressed by Eq. (8), and 
must be considered carefully in any theoretical determina- 
tion of the magnitude ofthe coefficient Z; but its direct effect 
upon the excitation of instability waves at the base of the jet 
can be neglected if 129) holds. This approximation would not 
be appropriate if we wished to simulate the transition from 
edge-tone to pipe-tone behavior so beautifully demonstrated 
by Coltman.23 The direct effect of -- f(t ) upon the base of the 
jet is the feedback mechanism giving rise to edge-tone behav- 
ior. 

There are yet other reasons, not least the strong fre- 
quency dependence of the growth rates of instability waves, 
why Eq. (25} is in principle a far cruder idealization for the 
organ pipe than Eq. (1} is for the clarinet or the violin. Fortu- 
nately, however, the inaccuracies inherent in (25) are almost 
completely immaterial for the case of large-amplitude, near- 
resonant oscillations that interests us most. In that case, not 
only is (29} well satisfied, as will now be illustrated (and as 
can also be verified directly from Coltman's 2• experimental 
results by comparing his Figs. 7 and 8}, but the jet moreover 
spends most of its time fully "switched" into or out of the 
pipe, so thatf(t ) is very nearly a square wave (again as report- 
ed by Coltman). That is, the system spends most of its time 
on One or other of the asymptotes in Fig. 12• _and is indiffer- 
ent to details in the waveform of the acoustic displacement 
qlt } and in the form of (25), except near zero crossings? In 
addition, the waveform ofq(t } tends to be weak in high har- 
monics, so that the frequency dependence of the growth 
rates 6finstability waves is of less consequence than might at 
first be thought. 

Figure 13 presents an example of steady-state wave- 
forms obtained from Eqs. (10}, (11 }, and {25}, using the ideal- 
ized reflection function r•t } given by { 18}. Numerical values 
are given in the figure caption. The parameter h of the non- 
linear characteristic (28) is zero lunlike Fig. 12). In virtue of 
(27}, h = 0 corresponds to a time-average jet position exactly 
bisected by the lip, so that no even harmonics are gener. at- 
ed?'• As well as the waveforms ofq and f, we show, in the 
correct relative phase, thoseofdq/dtanddf/dt together with 
those of the outgoing and incoming signals dqo/dt and dq•/ 
dt computed from Eq. (9). They are the most useful wave- 
forms for making a comparison with the experimental re- 
suits reported by Coltman? The scale on which dq/dt is 
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FIG. 13. Waveforms for a steady-state, flute-like oscillation exactly at reso- 
nance (r= T/2), obtained by solving Eqs. (10), (IlL and (25). The wave- 
forms of q, dq/dt, f, dr/dr, dqo/dt, and dq,/dt are shown. Positive volume 
displacements and velocities are directed into the mouth or embouchure 
hole of the pipe, and positivef means that the jet is blowing into the pipe. 
The vertical bar on the right gives the theoretical peak-to-peak amplitude of 
dq/dt for the limiting triangular waveform discussed in Ref. 58. This peak- 
to-peak value is 3.84, corresponding to positive and negative excursions 
+ 1.92. The re•ection function has full width (19) equal to 15% of T. Other 
parameter values (for both sets): h= 0, k = --0.5, I=0.2 in (28); 
Z ---- 0.0233 T; a in Eq. (18) is determined by the trapezoidal approximation 
to (261 . 

plotted is the same as for f, to give some idea of the accuracy 
of the approximation {29}. The results of Fig. 13 were ob- 
tained by stepping Eqs. (10}, II 1}, and 125} forward in time 
until steady oscill•ations were obtained. To get the oscillation 
started, a small, constant displacement q was assumed to 
exist before turning on the jet. 

The time delay r is one half the round-trip time T, and 
the period of the resulting steady oscillations is T = 2L/C, 
precisely that of the pipe's gravest free mode. The model pipe 
is oscillating precisely at resonance. The delay r = T/2 re- 
quired for this differs from the value •- ----- 3Te/4 characteriz- 
ing the gravest edge-tone oscillation of period Te.7ø Reso- 
nance does not mean that the edge-tone frequency agrees 
with the pipe frequency, as has sometimes been assumed. 
The reason is the different delay in the feedback mechanism 
producing edge tones, via the localbackflow -- f(t } instead of 
the acoustic pipe flow dq/dt. • 

The waveforms and phase relations shown in Fig. 13 are 
strikingly consistent with all the observations reported by 
Coltman 23 for oscillations in a long organ pipe at resonance. 
In particular, Coltman remarked on the triangular shape of 
the experimental dq/dt waveform, as well as on the square 
waveform off and on the experimentally determined phase 
relation between them (jet switches into mouth, i.e.,f goes 
positive, at the time of maximum dq/dt, i.e., at maximum 
acoustic flow into the mouth). Coltman also remarked on the 
waveform of pressure at different positions within the pipe, 
finding a triangular waveform at the midpoint and trapezoi- 
dal waveforms at positions in between the midpoint and the 
ends. The observations showed that the entire pressure dis- 
tribution P { x,t }"takes very closely the form of the wave on a 
string plucked in the middle." All these features are repro- 

dueed by the expression 

P(x,t)o: •qo -- -- •q, •), (30) 
which estimates P{ x,t) for a uniform pipe in terms of the 
outgoing and incoming signals, neglecting boundary-layer 
dissipation and any other contribution to rtt ) that may origi- 
nate from the body and mouth of the pipe, rather than at the 
far end. The waveforms implied by {30) at any given x can 
easily be constructed by suitably phase-shifting the bottom 
two waveforms in Fig. 13 and subtracting the result graphi- 
cally. For instance, at the midpoint the two contributions 
reinforce to give the same triangular waveform as dq/dt, but 
delayed by a quarter period relative to dq/dt itself. At other 
values ofx they combine into a trapezoidal waveform. 

A partial explanation of the triangular shape of the dq/ 
dt waveform was given in Ref. 14 from a frequency-domain 
viewpoint. The time-domain viewpoint leads to a much more 
complete explanation (which, once perceived, is easy to 
translate into frequency-domain language). In fact one can 
show that an approximately triangular waveform is to be 
expected, at resonance, irrespective of the shape ofr(t ), as long 
as r(t) is sufficiently narrow, and as long as the jet is switch- 
ing. This interesting theoretical result seems not to have been 
remarked upon previously. It shows that the waveforms we 
have found can probably be regarded as a genuine explana- 
tion of Coltman's result, even though we do not know the 
exact shape ofr(t ) for his experiment. It should apply in prac- 
tice to any relatively long pipe with sufficiently small acous- 
tic losses. 

The derivation of this theoretical result is given in 
mathematical detail in Ref. 58. Its basis is essentially the 
principle described earlier (and first used by Cremer •9 for the 
case of the bowed string), namely that the shape of the 
steady-state waveform can be understood in terms of a com- 
petition between the sharpening of its corners by the pulses 
in df/dt•[F.q. (8)], and their smearing-out by r•t) [Eq. (4)]. 
Note that, as before, the incoming waves dq•/dt in Fig. 13 
(bottom trace) have rounder corners than the outgoing waves 
dqo/dt (second from bottom). However, there are essential 
differences as compared to the clarinet and bowed string. 
These differences are related to the different shape of the 
nonlinear characteristic. The F(q) shape shown in Fig. 12 
cannot exert strong nonlinear control over the steady-state 
amplitude in the manner of the F(q) shapes shown in Figs. 3 
and 6. Once the jet is switching fully into and out of the pipe, 
f(t ) becomes nearly a square wave, whose amplitude is insen- 
sitive to the amplitude of q. The amplitude of q is therefore 
limited mainly by dissipation, represented in the model by 
the properties of r(t ). This fact, and the triangular shape of 
the waveform itself, can also be understood in terms of an 
analogy with a simple problem in heat diffusion. sa 

The important role of linear dissipation in the model 
helps us to underhand another aspect of its behavior not men- 
tioned until now, namely the length of the starting transient. 
The starting transient predicted by the model {not shown) is 
very much longer than, say, for the model clarinet at large 
amplitude. This is also true in the real world, where the flute 
is known as one of the slowest-speaking members of the or- 
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chestra, despite the compensating skills developed by fiau- 
fists. The duration of the mode/transient, which exhibits a 
smooth, monotonic growth of amplitude, is of the same or- 
der as the time for the gravest mode of the linear element to 
decay freely. We shall not discuss the model's starting tran• 
sients in detail, since for one thing the approximation (29) is 
unlikely to hold in the earliest stages of such a transient. In 
addition, if we were aiming at realistic transients we would 
have to pay closer attention to the actual nonlinear fluid 
dynamics, 7•'72 implying possible variations in Z during the 
transient? s In a real starting transient, moreover, the jet ori- 
rice may act momentarily as an isolated monopole. This 
seems likely to be important for getting the oscillation going, 
especially if the note is vigorously "tongued" by the player. 

The model as it stands successfully imitates various oth- 
er real-world phenomena. Varying the delay to a fourth, a 
sixth, and an eighth of the round trip time Tresults in oscilla- 
tions at frequencies of two, three, and four times the funda- 
mental, simulating the flautist's or recorder player's produc- 
tion of the octave, twelfth, and second octave by 
"overblowing," i.e., increasing jet speed and reducing the 
delay •'. Variation of •' between these simple integral frac- 
tions produces the frequency-shifting effects already men- 
rioned. The introduction of even harmonics by displacing 
the jet off-center, most recently discussed by Fletcher and 
Douglas as and by Nolle, • may easily be simulated, in the 
present case of an open pipe, by making h nonzero. This 
displaces the F(q) curve vertically, imitating one of the ways 
in which a flute player can vary tone quality, or an organ 
builder "voice" an open flue pipe. Note incidentally that 
because (27) constrains (f) and not (q) to be zero for the 
open pipe, shifting the FIq ) curve horizontally would exert 
essentially no control over the conditions of oscillation: (q) 
would simply shift by the same amount, and other details 
would be unaffected. This is consistent with the intrinsic 

arbitrariness in the choice of an origin for the displacement q 
in an open pipe. The reverse is true for a closed pipe; it is now 
(q) that is zero, as for the clarinet, and control must be 
exerted (in the model at least) by shifting the F(q) curve hori- 
zontally. It is not actually obvious how to choose the shift a 
prioriin either case; the time-average position of the jet in the 
real instrument involves nontrivial fluid-dynamical effects, 
not accounted for in the model, of which the "acoustic 
streaming" associated with boundary-layer dissipation is 
only one example. 73-75 It is simplest to regard the imposed 
shift in the F(q) curve as a disposable parameter to be chosen 
for consistency with observed behavior. 

III. CONCLUDING REMARKS 

The simple time-domain model defined by Eqs. (10), 
(11), and (25), supplemented where necessary by the hystere- 
sis rule described in Sec. IIC, has been found capable of mim- 
icking basic aspects of the strongly nonlinear behavior of the 
clarinet, violin, and flute families simply by changing the 
shapes of the functions r(t ) and F(q) which characterize the 
linear and nonlinear elements of the model, and by changing 
the time delay •' in Eq. (25) (zero for the clarinet and violin, 
and positive, usually of the order of half an oscillation peri- 
od, for the flute family). 

Three basic phenomena which are reproduced by the 
model and which are easy to understand from a time-domain 
viewpoint are 

(1) the frequency shift which can be caused by a suffi- 
ciently severe nonlinearity F(q), of practical significance for 
the bowed string (Sec. IIC}, 

(2) the nonlinear amplitude-limiting mechanism for 
clarinet and bowed-string oscillations, tightly controlled by 
the shape ofF(q) (Secs. liB, C), and 

(3) the entirely different amplitude-limiting mechanism 
in the flute family, controlled mainly by dissipation in the 
linear element and hardly at all by the shape of F(q) (Sec. 
liE). This helps explain the tendency of the flute family to 
exhibit relatively long starting transients. 
These and many other phenomena are modeled in a qualita- 
tively correct way even when using the simplified reflection 
functions r(t) and nonlinear characteristics F(q) suggested 
here for demonstration purposes and ease of programming. 

When implementing time-domain models it is generally 
useful to arrange for the parameters of the simulation to be 
varied interactively from the computer keyboard while the 
simulation proceeds. The simulation can then be "played," 
more or less as a real instrument is played. A little experience 
with this soon reminds one of a well-known property of non- 
linear phenomena, namely their nonuniqueness. Several dif- 
ferent regimes may be possible for the same final set of pa- 
rameter values, especially for F(q) shapes like that in Fig. 6. 
One soon learns how to encourage a given type of oscillation 
during the initial transient, a matter in which musicians de- 
velop superlative skill. One is also reminded of the rich var- 
iety of periodic and aperiodic behavior which may be exhib- 
ited by even the simplest nonlinear oscillators (see Appendix 
A). The question of which behaviors are physically realistic 
for musical-acoustical purposes, and which result from too 
unrealistic a choice of model characteristics, has yet to be 
studied systematically, although instructive examples re- 
garding stable versus unstable behavior were encountered in 
Sees. lib and liD. 

It is easy to extend the simple time-domain model pre- 
sented here to other instruments, and to the more elaborate 
levels of simulation needed for direct comparison with labo- 
ratory data. We have found such models extremely useful in 
our research on the bowed string •8'•9'4•'4• and on the clari- 
net? When finite reed mass is taken into account, as in more 
refined models of the clarinet which allow for the reed reso- 

nance,•'3• an integro-differential system of equations takes 
the place of the simple integral system solved here, but the 
equations are still amenable to efficient numerical solution 
by stepping forward in time? This modification is essential 
in the case of the brass wind instruments, for which "reed" 
or lip mass is of leading importance. 3'7• Integro-differential 
equations also arise naturally for the oboe and other conieal- 
bore instruments, because of the inertia of the air near the 
small end of the bore. Conical-bore instruments can be mo- 

deled by replacing (2) with the corresponding formulae for 
spherical waves. ?• 

The bowed string, by contrast, can be simulated very 
realistically with models which are direct extensions of the 
present one, involving integral equations only. In our inves- 
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tigations into the many observed regimes of periodic and 
aperiodic bowed-string behavior, time-domain simulations 
have proved extremely helpful in achieving a definitive inter- 
pretation of laboratory results• The key to constructing an 
efficient algorithm is to introduce more than one reflection 
function. t9 "Right-hand" and "left-hand" reflection func- 
tions r R (t) and r L (t) are used to characterize the shapes of 
pulses returning to the bow from the two ends of the string, 
as described in Appendix B. Moreover, for any quantitative 
simulation of real strings, or even a qualitatively correct sim- 
ulation of starting transients and other transient behavior, it 
is vital to take torsional as well as transverse motion into 

account as was noted inthe discussion following Fig. 9 (Sec. 
liD). 

An interesting bowed-string phenomenon easily stud- 
ied by these methods is the "wolf note." Two wolf simula- 
tions are shown in Fig. 14. They were obtained by solving 
Eqs. IBI3•-•B141 and {11 using a Gaussian right-hand trans- 
verse reflection function of the type shown in Fig. 4, but 

realistically narrow, and a left-hand transverse reflection 
function of the type shown in Fig. 15, having a similar main 
pulse followed by a weak, decaying oscillation representing 
the effect of a damped resonance in the left-hand string ter- 
mination. These examples are classical "simple" wolves of 
the kind first explained by Raman in 1916, TM for which the 
resonant period of the string termination is close to the full 
round-trip time T for the two string sections taken together. 
Here the resonant period ofthe string termination is 65 T/64. 

A point of special interest is that the only parameter 
changed between the two simulations was the normal bow 
forcefb; see captions to Figs. 14-16 for further detail. The 
simulations thus illustrate the fact that the wolf or "beat" 

period may increase substantially Iby a factor of about 3/2 in 
this ease) asfb increases (by a factor 2 in this case). Further 
simulations, not presented here, showed that the increase is 
monotonic asfb varies. The increase in wolf period is easily 
understandable from Raman's explanation, which was 
based on time-domain thinking and the concept of "mini- 

(a) 

Bow force doubled: 

o 

(b) 

FIG. 14. Two simulated wolf notes, from Eqs. (BI 3) and (BI4) and {1), illustrating the variation of wolf period with normal bow force•. Bow force for the 
lower pair of traces is double its value for the upper pair. All other parameters are the same for the two wolves. Waveforms shown are transverse center-of- 
mass string velocity at the bow (upper waveforms), and bridge velocity on the same scale (lower waveforms). The right-hand reflection function has full width 
(19} equal to 3.9% of the round-trip time T for the whole string [b = ( 128/3 T} 2 in (18), the same as in Fig. 9 of Ref. 19; note incidentally that v'J/128 and (2/ 
3) •n in that caption are wrong and should be 3/128 and 2/3, respectively, and similarly that 1.5 in the caption to Fig. 18 of Ref. 41 should be 1.52]. The time 
step At is T/128 and the propagation delays for transverse waves on the left- and right-hand sections of string are in the ratio 24:104, so that the bow is 
nominally 3/16 of the way along the suing. The main pulse of the !eft-hand reflection function also has width 3.9%, and the parameters for the oscillatory tail 
are specified in the caption to Fig. 15 below. The torsional and transfer reflection functions are set to zero. The nonlinear characteristics F{q) used in Eq. { 1 } are 
those shown in Fig. 16. They correspond to values 1.2v b and 2.4v b of normal bow forcef•, in units such that • Y---- 1, where oh( = p} is the bow speed and If is 
the transverse wave admittance of the string. The ratio Y'/Y of torsional to transverse wave admittance is 0.2. 
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FIG. 15. Lea-hand or "bridge" reflection function of the type needed for 
•imulating woffnotes, from Ref. 19, with a main pulse centered on t = TL 
and a decaying tail proportional to the real part of 
exp[(jo• -- •o/2Q•t - T•)], representin• th= elect of free motion of the 
bridge. In the example shown the free decay'has a Q of 30; the same Q value 
is used for the simulations in Fig. 14. The amplitude of the bridge motion is 
governed by the admittance ratio Y - •(SM)- •12, where $ and M are the ef- 
fective stiffness and m• seen by the string at the bridge ?? and Y is the 
transverse wave admittance of the string; here Y - •(SM }- '/2 is 0.05 to make 
the decaying oscillation clearly visible, but the more realistic value 0.01 is 
used for the simulations in Fig. 14. The main pulse is a Gaussian whose full 
.width is 3.9% of the round-trip time T for the whole strin8. When comput- 
ing the convolution integral, efficiency is gained by separately computing 
the contributions from the ma;q pulse and.from the decaying sinusoid, and 
using the fact that the latter contribution to the integ•ml, in complex form, is 
equal to the corresponding quantity already computed at the previous time 
step, multiplied by exp[(j• -- o•/2Q) At ], plus a further contribution from 
the current time step. 

FIG. 16. The two nonlinear friction characteristics F(q) used in the wolf- 
note simulations, made up of straight line segments as a computationally 
convenient approximation. Here q is velocity of the string surface at the 
bow, and oh( = P) is bow speed. It is assumed, in qualitative agreement with 
laboratory evidence, 43.47.4s that F (q) scales with normal bow force. fs. so that 
the heavy F(q) corresponds to the upper pair of traces in Fig. 14, and the 
light one to the lower pair of traces in Fig. 14, with double the value off•. 
The straight line represents Eq. (B!3}, for one value ofqe =(q•L +q• 
+ q•,. q- q• }. Its slope is (1 + Y'/Y)-' = 0.83, in terms of the dimension- 

mum bow force." 2•'4ø'43 The simplest frequency-domain ex- 
planation of the wolf note ?? fails to predict the increase, since 
it associates the wolf period with properties of the linear 
element alone. The linear properties are identical in the two 
simulations shown. 

The progress achieved so far using the time-domain ap- 
proach poses a stiff challenge to the ingenuity of experi- 
menters in musical acoustics today. There is now no math- 
ematical nor computational impediment to running 
extremely realistic and detailed simulations of musical oscil- 
lators, which could lead to quantitative comparisons with 
experiment, and ultimately to simulations sophisticated 
enough to be useful as practical design tools in musical in- 
strument manufacture. At present the main impediment to 
such progress is a lack of high-precision experiments yield- 
ing sufficient information about real reflection functions and 
nonlinear characteristics. In some cases, special ingenuity 
may be required to Obtain the relevant information. For in- 
stance, to measure all the relevant reflection functions for a 
real bowed-string instrument (see Appendix B) the surface as 
well as the center-of-mass motion of the string has to be 
excited and observed. Moreover the measurements will have 

to be done at extremely high spatial and temporal (or phase) 
resolution, in order to observe the kind of detail in the trans- 
verse and torsional reflection functions which is relevant to 

the very fast events characteristic of the nonlinear bow- 
string interaction. 
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APPENDIX A: RELATION TO THE THEORY OF 
ITERATED MAPS 

It is the purpose of this appendix to show that Eq. (10) 
can be written under some conditions as a nonlinear differ- 

ence equation or "iterated map" {of. Refs. 36 and 37) of a 
type that has been extensively studied in recent years. The 
equation to be derived is 

g• =.4H( g•_ , ), (AI) 
where H (g) is a nonlinear function ofg with a single quadrat- 
ic extremum in the domain of the argument, and,4 is a con- 
stant. The case H (g) = g( g -- 1 ) is one simple example. The 
general behavior of such equations for differen.t values of,4 
has been reviewed by May. •4 Recent advances of interest to 
physicists have been published by Feigenbanm, •6 and an' 
overview is given in a recent monograph by Collet and Eck- 
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mann? One motivation for these theoretical developments 
lies in the possible connection between the solutions of Eq. 
(A 1) and the onset of"turbulence" or chaotic behavior in less 
simple systems. The behavior predicted by Feigenbaum has 
indeed been found in systems more complicated than those 
for which the theorem has been proved, for instance in cer- 
tain fluid-dynamical systems. 27-e9 

Suppose the reflection function is a delta function 
r(t) =/15(t--T). We now drop the requirement that 
•4 = -- 1. Then in units such that Z = 1, Eq. (10) becomes, 
with (i 1), 

qn -- A (qn --I ørfn -I ) •rfn, 

where q.is the value ofq(t ) for t between nTand (n + 1) T. 
All the time-dependent functions arc constant for each 
round-trip period T, changing their values instantaneously 
only at times T later than the last change. Corresponding to 
2q i and 2q o in (9), define 

g.---- q. --f. (A3) 
and 

h, = q,+f,. (A4) 

As just defined, h appears to depend on both q andf. How- 
ever, if specifying g uniquely determines q, then h ---- H (g), 
and the problem takes the form ofEq. (A1). As long as the 
maximum positive slope ofF(q) is less than unity (no hystere- 
sis), then g does uniquely determine q. 

With an F(q) like that shown in Fig. 3, and/1 negative, 
•4H (g) has a single quadratic minimum at a positive value of 
g. Feigenbaum's conditions ea are satisfied. From a theoreti- 
cal viewpoint the interest lies in how the period of the oscilla- 
tions depends on/1. We have done computer simulations of 
the system represented by Eq. (A1), using an F(q) of the type 
shown in Fig. 3, and found the expected succession of period 
doublings as •4 is decreased towards -- 1, following quanti- 
tatively the universal behavior predicted by Feigenbaum. 
With an F(q) of the type shown in Fig. 6, the model becomes 
the Raman model of a string bowed at its midpoint. As indi- 
cated in Sec. IID, we still get sequences of period doublings. 
These have a different asymptotic behavior, as expected 
from the fact that the extremum in H(g) is no longer qua- 
dratic. For someF(q) curves there are ranges oL4 for which 
the period is very large (often exceeding the time of the simu- 
lation), and for which the spectrum is very complicated, oc- 
casionally even resembling broadband noise. All these phe- 
nomena persist when we take r(t ) to have small but finite 
width. 

APPENDIX B: MORE REALISTIC MODELS OF THE 
BOWED STRIHG 

The first step in generalizing the model is to allow for an 
asymmetrically terminated string bowed at any point. The 
most efficient algorithm is obtained by introducing separate 
reflection functions rL (t) and rs (t } for the sections of string 
-to the left and right of the bow, respectively.'9 The functions 
r L (t) and rs (t) are a concise means of describing the effects of 
the left- and right-hand string terminations, together with 
the propagation delay, high-frequency attenuation and wave 
dispersion on each section of the string. The terminations 

may be of any kind, provided that both they and the string 
behave linearly. Note incidentally that rr (t) and r R (t), which 
were called "corner-rounding functions" in Ref. 19, were 
defined there with sign and time-origin conventions differing 
from those used here. 

Equation (1) is unaltered, 

/= F(q), (B1) 

but Eq. (4) is now replaced by the pair 

qiL = r•.*qor, q•a = rs*qoR, (B2) 

Eq. (7) by 

q -• qoL + qiœ • qoa + qiR, (B3) 

and Eq. (8) by 

1Yf= qo• -- qm = qos -- qir, 
where qor (t) and qir (t) represent the outgoing and incoming 
velocity waves to the left of the bow, qon (t) and q•a (t) those 
to the right of the bow, and where the constant Yis the wave 
admittance of the string. As was remarked in Sec. IIC, ad- 
mittance plays the same mathematical role for the bowed 
string as impedance does for the clarinet, owing to the differ- 
ent physical meanings ofq(t ) andf(t ). Here q is the transverse 
velocity of the string at the bow (whereas it was mouthpiece 
pressure for the clarinet), andf is the friction force exerted on 
the string (whereas it was flow past the reed for the clarinet). 
The first of Eqs. (B4) expresses the fact that the wave going 
out to the left is the 'same as the wave coming in from the 
right, apart from an additional contribution due to the fric- 
tion forcef. The effect off is to generate additional velocity 
waves • Yf which radiate equally in both directions away 
from the bow. The implied symmetry manifests itself in the 
invariance of (B4) under exchange of suffices L and R. 

Equations (B I)-(B4) are complete but not all indepen- 
dent, since the right-hand equalities in (B3) and (114) are equi- 
valent to each other. The equations may be rearranged to 
give a complete and independent set preserving the formal 
symmetry between L and R, and convenient for numerical 
solution. Subtracting (B4) from (B3) gives 

q = + qiR) + «¾% 

which may be compared to (10). Use of (B4) to eliminate qoL 
and qoR from (B2) gives 

q•L = rL*(qm +«Yf), qm =rR*(q•r +•Yf), 
which may be compared to (11). Equations (B1), (BS), and 
(B6) can evidently be solved numerically in just the same 
simple way as before, with (q•/. + q•R) playing the role of q• 
and representing the contribution to q(t ) attributable to past 
history. This is what was done in Ref. 19. At each time step, 
(B6) is used to compute the new values of q•r and qm, and 
then (B 1) and (BS) are solved simultaneously to get the new 
values of q and f. As was shown in detail in Ref. 19, the 
Friedlander-Keller ambiguity, if it occurs, is to be resolved 
using the hysteresis rule stated in Sec IIC. 

The next major step towards realism is to allow for tor- 
sional string motion. As was pointed out in Sec IID, tor- 
sional waves are highly significant for the way in which a real 
string responds to the bow, especially during any kind of 
transient. Equations (I]2)-(I]4) generalize to 
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q•L =rL*qo• +sL*q;•, qm =ra*qo R +sa*q;•, (B7) 

ß = rœ*q;L + sœ,qo, = + oa, (B8} 

tYf = qot - q,• = qo• - q,t, lB10) 
and 

Here q•L (t), etc., denote the transverse center-of-mass veloc- 
ity signals at the bow, and q• (t), etc., the torsional angular 
velocities multiplied by string radius, i.e., normalized so that 
the total surface velocity q(t ) at the bow is given by simple 
summation, Eq. (B9). It is the surface velocity q(t ), rather 
than the center-of-mass velocity, qoL 
that governs the friction forcef(t ) through Eq. I 1•. The tor- 
sional-to-transverse "transfer" refie6tion functions sL(t 
sn (t) appearing in Eqs. {B7) are related to their transverse-to- 
torsional counterparts s[ (t), s• {t } in (B8) according to 

Ys[(t)---- Y'SL(t), Ysh(t}---- Y'sn(t}, {BI21 

by the reciprocal theorem. TM Yand Y' are, respectively, the 
transverse and torsional wave admittances of the string, re- 
ferred to surface velocity and force. According to measure- 
ments by Schelleng, 4ø typical values of Y'/Y lie in the rang• 
0.26 to ! (the value 0.2 used for the wolf notes in Fig. 14 being 
somewhat on the low side, but still enough to a. ttenuate tran- 
sient subharmonics quite effectively 4t}. Experimental infor- 
mation on torsional and transfer reflection functions is lack- 

ing; the latter would seem unlikely to be very important for a 
string fitting snugly into a bridge notch, but might be more 
significant, perhaps, when the other end is stopped by the 
player's finger, under which the string might roll.-I.;ike trans- 
verse waves, torsional waves travel with little dispersion. 
They travel several times faster, depending on the type of 
string, 4ø'43'47 and so torsional reflection functions. may be 
expected to be dominated by narrow pulses with shorter de- 
hys. 

Once again, a more concise form of the equations may 
be derived. Equation {BS} is replaced by 

q=(q•L -Fq•n H-q;L +q;n)+«(Y+ Y'}f (B13) 
[cf. (10) again], and Eqs. (B6) by 

q,L =rL*(q,s +«Yf}+sL*(q;n + «Y•'}, {B14a) 

q,n = rn*(q,L + «Y f) + sn*(q;• 

q• ----r•*lq;r q-«¾•f) q-$Jt*lq,œ q-«Yf}. {B14d} 
In applying the hysteresis rule, it should be remembered that 
the straight lines in Figs. 6 and 16 now represent Eq. {B13}, 
and so have slope [ I( Y + Y') I - •, or (1 + ¾'/Y)- • in units of 
«Y. Thus torsion always increases hysteresis. 

In connection with the discussion in See. IID, we note 
that if all disturbances associated with torsion are assumed 

{somewhat unrealistically) to be perfectly absorbed by the 
string terminations, as in the example of Fig. 14, then the 
problem becomes mathematically the same as the problem 
without torsion, provided we replace the F(q) of Eq. (1) or 
{BI) by the nonlinear function G (q} of Fig. 10. For if all tor- 
sional and "transfer" reflection functions are set to zero, 

then the right-hand sides of (B14c) and {B14d} vanish, Eqs. 
(B14a) and (14b) reduce immediately to (B6), and (B13) re- 
duces to an equation of the same form as (BS), 

0 = (q,L + q,n) + «Yf, lB15) 

where we have defined • = q - «Y•. Since F{q) = G(O), by 
definition of G, we have 

f = G (•} (B 16) 

in place of Eq. (B I), showing that the problem has precisely 
the same mathematical form as the problem without torsion, 
withO playing the role of q, and G (•) the role ofF(q). G (0} may 
well be multiple-valued, but the hysteresis rule still applies 
exactly as stated in Sec. IIC. 

Equations (B13) and (B14) may be generalized still 
further to allow for real, nonrigid bow hair, •.•o in which case 
reflection functions for longitudinal waves on the bow hair 
are introduced. These involve time delays which vary in a 
prescribed manner as the bow moves past the string. The 
measured properties of bow hair imply that the associated 
effects should be smaller than those associated with torsional 

string motion. 43'47'?½ Another degree of freedom of real 
strings is transverse string motion normal to the bow hair, 
which is coupled to the main transverse motion parallel to 
the bow hair via the string terminations and also, nonlinear- 
ly, via bow-hair friction. sø-s• Normal bow forcef• then be- 
comes a time-dependent variable rather than a prescribed 
parameter, and reflection functions for transverse waves on 
the bow hair are required. The fact that the hair is bent 
through a small but finite angle at the string, for finitefo, 
may also need to be taken into account. It is not known to 
what extent generalizations of this type, some of which go far 
beyond what is known experimentally, are musically impor- 
tant. 

A different kind of generalization, which recently 
helped us to identify a prominent source of audible noise in 
bowed-string sound, • is to allow the string to be bowed at 
two or more neighboring points simultaneously. This ena- 
bled us to simu•te the "differential slipping" of the string 
past a bow of finite width. Under certain parameter condi- 
tions it proved to be the main cause of audible noise, particu- 
larly when the string is bowed very close to one end. It is 
often quite significant under conditions encountered in con- 
cert performance, and sets one of the practical limits on the 
usable range offo. 

Some of the foregoing generalizations represent con- 
ceptual elaborations as well as elaborations of detail, since 
they involve schemes more complicated than that shown in 
Fig. 1. For instance, in the case of the string bowed at two 
points simultaneously there are now two nonlinear elements, 
linked to a linear element with two inputs and two outputs. 

When implementing models of the form indicated by 
Fig. 1, it might be asked why the simpler-looking equations 
(10) and (11) are not used instead of (B5} and (B6) and their 
further generalizations. For Eqs. (10) and ( 11 ) still hold if we 
define a .single "reflection function" r(t } through (15)? The 
latter definition applies formally to any linear elemeni with 
one inputf(t ) and output q(t ). The numerical method needs 
no modification if r(t ), so defined, is zero or bounded in the 
neighborhood oft = 0, since in that case q• as defined by (11 ) 
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still depends only on the past history of the system. This can 
be shown to be true of any model in which the impulse re- 
sponse g(t ) of the linear element begins with a narrow, isolat- 
ed spike at t = 0 which can be approximated as a delta func- 
tion, as discussed in Ref. 19, but is finite thereafter. The 

parameter Z appearing in Eq. (15), or « Yin (B5), must be set 
equal to the area under the initial spike. The approximation 
of the initial spike by a delta function is related to the basic 
assumption of Sec. I, that a separ?tion into sets of incoming 
and outgoing one-dimensional waves is possible. Now r(t) 
usually decays much more rapidly than g(t ),3• because of a 
cancellation of poles in (15), leading to a gain in computa- 
tional efficiency over the direct use of g(t ). However, the 
computational efficiency obtainable when separate reflec- 
tion functions are used is far greater still. This is the reason 
why (BS) and (B6) and their various extensions are to be pre- 
ferred. 
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