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Attempts to understand the action of musical instruments at a level having some impact on the problems of
musicians and instrument makers must face formidable unsolved problems in psychoacoustics as well as in
classical physics. This review outlines what is known about the physical properties of stringed instruments, with
emphasis on the violin family, and tries to identify basic outstanding problems where progress may be hoped for
within the next decade. One such area is assessment of the widely used simplest idealization of violin behaviour
in which the driving at the bridge is assumed to be transverse, and the body is modelled as a ‘black box’ with
one input and one output. Other major problems include the physical nature and psychoacoustical relevance
of complex fine detail in the behaviour of the bowed string.

According to tradition, Pythagoras was first guided
to the notion that mathematics held a key to under-
standing nature by observations of the relation
between musical intervals and natural numbers.
From this seminal position, musical acoustics
remained a recognised part of scientific endeavour
until the early years of this century, with scientists of
the calibre of Rayleigh and Helmholtz making major
contributions. However, most of the physicists and
applied mathematicians of the next generation
turned away from such problems to the new and
exciting developments of relativity and quantum
theory. Only in recent years has there been a general
revival of interest in classical problems, including
musical acoustics.

Indeed it has been recently suggested that musical
acoustics may again hold a key to progress in one of
the frontiers of science, namely the understanding of
the human brain. In a recent paper entitled
‘Research potentials in auditory characteristics of
violin tone’, P. C. Boomsliter and W. Creel' point
out that

Our understanding of hearing and of the violin can
and should move forward together... When we
study the variations introduced by the ‘slip-stick’
action of the bow, we are also studying the nature of
short-time organization by the nervous system.
When we study note tunings in violin performance,
we are also studying principles of association in
hearing. When we study richness and body in violin
tone, we are also studying what makes for continu-
ing attention and satisfaction in human perception.
When we study the phrasings of virtuosos, we are
also studying the longer organizing systems of the
human mind.

This growing awareness of the psychological
dimension of the subject in turn affects the type of
CCC-0308-0188/78/0003-0157%08.50/1
© Heyden & Son Ltd, 1978

problem to which physicists address themselves, and
also the scope of their enquiries: alongside an
examination of the behaviour of instruments they
must do the psychoacoustical work necessary to
correlate the subjective judgements of the musician
with physical effects amenable to measurement and
theoretical investigation.”” As we shall see, this
work presents challenges that can be even more
formidable than those of physics.

We review here recent work on the stringed
musical instruments, especially those of the violin
family as they pose some of the biggest questions.
We emphasize problems that are not dealt with in
the excellent recent book by Benade,’ and we
emphasize questions rather than answers: the reader
must not expect to find any ‘secrets of Stradivari’.
Serious research has not yet reached this level of
confident prediction. It is unfortunate that the
popular image of violin acoustics has been largely
moulded by purveyors of pet theories on this subject
(see for example chapter 5 of Heron-Allen® entitled
‘The violin, its vagaries and variegators’),

THE STRING AND THE SOUND BOX

The physical behaviour of a stringed instrument can
be examined under three headings: first the
behaviour of the stretched string whose vibration is
controlled in one way or another by the player,
second the response of the wooden sound box of the
instrument and the neighbouring air in response to
the string motion, and third the radiation of sound,
almost entirely from the sound box and generally
involving a complicated directional dependence.
These three cannot be treated entirely separately,
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because there is a back-reaction of the body vibra-
tions on the string which in the bowed instruments
has an important effect on the ‘feel’ of the instru-
ment to the player. The body vibrations are in turn
affected by a radiation reaction. We deal here mainly
with the first and second topics; aspects of the third
topic concerning directional radiation patterns are
covered in an earlier review by Cremer’ and else-
where.®

Though the behaviour of a stretched string which
is plucked or struck is well understood, the
behaviour of a bowed string is much more compli-
cated. The motion was understood in outline by
Helmbholtz as far back as 1860, and much additional
detail was elucidated by C. V. Raman early in this
century. However, many of the musically all-
important finer details have only recently begun to
be explored. Of particular interest are the tolerance
ranges in the various parameters under the player’s
control for a musically acceptable ‘steady’ note to be
produced, and also the length and nature of the
string transients involved in vibrato, ‘attack’ and
‘articulation’, to which the ear is particularly sensi-
tive. The ‘steady’ case has been investigated to some
extent already, the transient case hardly at all. Both
present outstanding problems for the future.

The behaviour of the sound box is a concern of the
instrument maker, and much information is avail-
able from master luthiers who have been prepared to
talk about their ideas and methods. Especially
important  contributions have come from
scientifically minded makers who take extensive
acoustical measurements on components of instru-
ment bodies at various stages of construction. These
results, and theoretical investigations based on them,
are apparently beginning to yield some of the essen-
tial characteristics of good instruments, although not
the distinguishing features of the very best ones.
(Indeed it is questionable whether ‘best’ has any
unique meaning.)

One important fact to emerge is that at present we
do not know enough about the properties of wood:
we need to know the elastic properties and especially
the internal damping behaviour in more detail than
was previously realised. Useful light is being shed on
this problem by a recent effort to develop a carbon

fibre composite material to duplicate the necessary
properties of Norway Spruce, Picea excelsa, the
wood used for the soundboards of almost all stringed
instruments.

Understanding musical instruments involves
making theoretical models of their behaviour.
Before considering in detail various models that
have been proposed for the bowed string instru-
ments, we should ask a basic general question: what
constitutes an adequate model in musical acoustics?

MODELS AND RESEARCH STRATEGIES IN
MUSICAL ACOUSTICS

From the music of the spheres’ to the Glass Bead
Game,Fg it has been common to speak of connections
between music and mathematics. However, musi-
cians and scientists have by no means always
cooperated fruitfully in the study of musical acous-
tics. Musicians tend to think that science has nothing
to tell them, while some physicists tend to assume
that the study of instruments and concert halls
involves no more than straightforward measure-
ment. In fact, nothing could be further from the
truth: recent developments in psychoacoustics,”” as
well as celebrated disasters in concert hall design,
have emphasized the subtlety of the human ear—
brain system as well as modifying some of the older
established ideas about the mechanisms of hearing.

Vision involves similar subtleties, and Fig. 1 pro-
vides an excellent illustration. The reader will have
no difficulty in seeing a Dalmatian dog, with a wealth
of information about what it looks like and what it is
doing. Now one could readily measure such things as
statistical distributions of spot sizes and spacings in
the picture, or the chemical composition of the
printing ink, and it is clear that such data, however
elaborate, would not reveal even the existence of the
dog. Indeed, it does not take much thought to dis-
cover the practical impossibility of writing a general
purpose computer program which would recognize
the presence of the dog out of the myriad other
possibilities.”

Similarly, while acknowledging that standard
acoustical measurements have their uses, we must
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Figure 1. Photograph by
Ronald C. James. (Repro-
duced from The Intelligent
Eye by R. L. Gregory, by
permission of Weidenfeld
and Nicolson Ltd.)

guard against the assumption that such measure-
ments can capture everything significant about a
musical sound. Again, it is clear that very small
changes to Fig. 1 could remove or drastically change
the dog, and this is equally true of musical sounds:
we must not assume that small physical changes
necessarily produce small perceptual effects.'” So
when we ask the question ‘what is an adequate
model in musical acoustics?’, one thing is plain: the
final test of ‘adequacy’ must come from the ears of
the listener, and the fingers of the player. Lacking as
we do a sufficient understanding of the auditory
system, we should aim to listen to, and play, our
models."’

The ability to recognize the dog in Fig. 1 is
thought to depend on a hierarchy of ‘feature detec-
tors’ in our neural signal processing system. Among
those simple examples for which direct neurophy-
siological evidence is available are visual nerve cells
which respond specifically to straight lines or edges
at various inclinations."' Past experience s
important: feature detection apparently involves
matching against internal paradigms.’'” In the audi-
tory system, feature detectors can be roughly
classified according to the time-scale over which they
operate.

The shortest time scale is that evidenced by pitch
discrimination: vibration period differences of tens
of microseconds are involved.”>'> The opposite
extreme is encountered in the perception of melody
and rhythm, involving time scales from fractions of a
second upward. In between are what we can term
phenomena of ‘intermediate time scale’, such as
starting transients and vibrato, where significant
changes occupy tens of milliseconds. These last
are the time scales of consonants in speech, and
are also of prime importance in the recognition
and quality assessment of musical instruments by
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their sounds. Correct description of intermediate
time scale phenomena is thus an extremely
important requirement for models in musical
acoustics.

The foregoing remarks necessitate a critical atti-
tude to two research approaches which are
frequently suggested. On the one hand, one could
take an instrument and try to measure all the rele-
vant data about its physical behaviour: such blind
measurement is usually sterile since knowledge
about what is ‘relevant’ to the ear is so limited. On
the other hand one could try to simulate on a
computer the entire chain of acoustical events from
the actions of the player to the signals at the
eardrums of the listener: such large scale numerical
modelling is, however, much more limited in scope
than is sometimes supposed. A sufficiently accurate
simulation of a musical instrument in its acoustical
environment is well beyond the reach of present day
computers; and even if it were not, it would be
impossibly cumbersome to use as a research tool
because of the volume of information that would be
produced.

To make progress we must divide the chain of
events into components and study these individually
and in simple interactions before trying to
comprehend everything at once. Such study should
combine restricted model building with measure-
ment and listening tests. Two examples may be cited
as illustrations, each successful in its own way. The
first is the work of Benade ef al.,’ in which a simple
theory was used to interpret measurements of the
properties of a wind instrument. The theory then
suggested that certain small changes in the tube bore
and hole geometry would improve the playing pro-
perties of the instrument, and subsequent playing
and listening tests confirmed this. The second is the
work of Risset and Mathews, ' who analysed sounds
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of a trumpet, used available psychoacoustical know-

ledge to guess important features, including tran-

sient structure, and on this basis resynthesized
sounds which could then be compared with the ori-
ginal in a listening test.

COMPLICATIONS OF REALISTIC MODELS

Consider now what might be involved in realistic
models of, say, the violin. Figure 2 recalls the basic
chain of events occurring when a violin is played.
The player sets a string of the instrument into vibra-
tion with his bow. The string alone does not radiate
sound waves efficiently into the surrounding air, so a
wooden resonating structure is used, namely the
body or sound box of the instrument. The string
passes over a bridge in contact with the body, and
the movement of the string imparts a fluctuating
force which excites vibration in the wood of the
body. This in turn generates sound waves in the
surrounding air which radiate away to reach the ears
of the listener. Even if we leave aside the terra
incognita of the biological links in the chain, a closer
look at the purely acoustical aspects reveals a long
list of complications:

(a) The bow which excites the string is itself a
dynamical system, whose properties influence the
string’s behaviour.'® This fact, well known to
players, has received relatively little attention from
physicists.

(b) While the visible motion of the string is pre-
dominantly transverse, there will inevitably be
torsional'* and longitudinal'® motions as well,
greatly complicating the driving force at the bridge.
Even for the transverse motion, the linear wave
equation familiar from acoustics textbooks is by no
means the whole story for at least two reasons: first,
a real string is anharmonic because of slightly yield-
ing terminations’ and finite flexural stiffness,'® and
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second, the string can be played at sufficient ampli-
tude to introduce nonlinear effects.'>"’

(c) Many of the problems of real musical interest
are concerned not with the relatively simple motion
of the string during the middle, nominally ‘steady’,
portion of the note but with the complicated tran-
sient motions at the start and finish of the note,
Furthermore, even ‘steady’ notes may contain short
and intermediate time scale variations of several
kinds, the most obvious of which is vibrato.

(d) The bridge does not merely transmit forces
from the string to the body passively: it has vibration
modes of its own, many of them involving compli-
cated three-dimensional motions,'® and these can
strongly influence the eventual driving force on the
body.'® In addition, there will be a certain amount of
direct radiation of very high frequency sound from
the faces of the bridge.

(e) The geometry of a violin body does not lend
itself to simple theory: the combination of a compli-
cated shape and a constructional material, wood,
having a large number of independent elastic and
viscoelastic constants makes detailed modelling
cumbersome. Also, despite the small amplitudes of
typical motions in the body, it is possible that some
nonlinear effects may have audible consequences;
for example, effects associated with the purfling
inlaid around the edge of the front and back plates of
the instrument.”

(f) The strings must be regarded as part of the
body for the purpose of analysing its mechanical
behaviour. As St::helleng14 has pointed out, the
longitudinal compliance of the strings, especially in
the case of metal strings, will substantially change
the way the body vibrates.

(g) The vibrations of the body and bridge can
significantly affect the motion of the string. An
extreme example is what musicians call a ‘wolf note’,
an unpleasant stuttering effect resulting from the
attempt to play a note falling very near a strong
resonance of the body. In a less spectacular way,

Auditorium

Figure 2. Schematic indication of the chain of events when a violin is played. The picture fails to
suggest some of the important ingredients, such as slight movements of player or listener in the

auditorium; see text.
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back reaction of the body and bridge on the string
influences the ease with which any note may be
established, and the length and nature of its starting
transient.”'

(h) The air motion in and around the instrument
couples to the motion of the body. 2223 This coupling
is generally much stronger than that between the
body and the string: the body is, after all, designed to
radiate sound.

(i) The radiation properties of a violin body are
very complicated, especially at high frequencies.”
There are many possibilities for important effects
here, since the ear—brain system is very skilled at
using directional information in a sound field; for
example, this contributes to the ability of a listener
to follow a conversation in a crowded cocktail party.
The fluctuation of the directional radiation pattern
due to vibrato might, for instance, be important; if
so, this would help explain why conventional
recording techniques seem unable to capture the
sound quality of a violin played in a concert hall.
Benade” has demonstrated that the ear is sensitive to
the directional radiation patterns of wind instru-
ments played indoors; changes in these patterns are
perceived by the listener as changes in subjective
tone quality.

(i) The room in which an instrument is played has
many vibration modes in the audible frequency
range: even a domestic living room has tens of
thousands. Consequently, acoustical measurements
with a single microphone show wild fluctuations
when the microphone or any other object is moved
slightly. This complexity, far from being a problem
for the ear, is put to positive use;” for example, blind
people learn to use the information to ‘hear’ the
positions of obstacles in a room.

This list is by no means exhaustive. It suggests that
the first level in a hierarchy of models must inevit-
ably involve drastic simplification.

THE RESPONSE-CURVE MODEL

In the first instance we take the string motion as
given, and concentrate on the action of the violin
body, for this purpose regarding the bridge as part of
the body. Much of the early experimental work on
the subject took this approach, since the main inter-
est then was in seeking scientific ways of distinguish-
ing between different violins, especially between
good ones and bad ones, on the basis of the sounds
they made. On the grounds that the motion of the
string is much the same on any violin such
differences were naturally sought in measured
characteristics of the violin body. When we seek the
differences betwen playing properties of instruments
however, it becomes essential to model the string
motion, and we consider such problems in detail in
later sections.

The very simplest idealization is what may for
brevity be called the ‘response curve model’. To
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reach this, we first put the complexities of the radia-
tion and room acoustics problems on one side, and
consider the sound of the violin as heard from a
single, fixed microphone position. Next, we suppose
that the force on the bridge resulting from the
torsional and longitudinal motion of the string is
sufficiently smaller than that arising from the trans-
verse motion that we can neglect it. If we then
make the relatively minor assumptions that the
radiation process and the behaviour of the body are
linear to sufficient accuracy, we are left with a linear
‘black box’ with a single input and a single output.

Now it is well known that such a system can be
completely defined by its complex frequency
response function, that is a single function which
specifies the amplitude and phase of the output sine
wave when the system is driven with a sinusoidal
force of unit amplitude and any given frequency. In
experimental work on the violin family, as in
specifications for hi-fi equipment, it is customary to
plot only the amplitude, although this may well not
be adv:qu::).te.24

An example of a response curve measured from a
Stradivarius violin (the ‘Titian’ of 1715) is shown in
Fig. 3. In this case, the instrument was placed in
nearly anechoic surroundings to minimise effects
from the behaviour of the room. A transverse force,
whose amplitude was held constant as frequency
varied, was applied electromechanically to the violin
bridge. Peaks in the response curve indicate either
frequencies at which the radiation pattern of the
instrument happens to favour the microphone
direction, or resonances of the violin body, including
the air in and around it. Some of the resonant vibra-
tion patterns of instrument bodies at such peaks
have been explored experimentally by various
techmques &

The lowest peak in Fig. 3, around 270 Hz, is a
typical feature of response curves of reasonably
good instruments. 2329 1t has the distinctive property
of disappearing when the f-holes are blocked™ and
shifting to a lower frequency when the instrument
body is filled with carbon dioxide.’" The air cavity
within the body, together with the f-holes, is acting
somewhat like a Helmholtz resonator, modified by
coupling to body motions.”>?> (In guitars, the
modification is drastic.)”> The higher air-cavity
modes do not give rise to such easily identifiable
features in response curves, but their possible role
has been studied by Jansson.™

Many response curves have been published,*" >
but unfortunately some of them bear no close rela-
tion to the action of the instrument when excited by
its strings because the driving force was not held
constant as frequency varied.”’ Comparisons of
response curves obtained by different exmtatlon
methods have been given by Bradley and Stewart™"
and Hutchins.” Refinements aimed at minimizing
directional radiation effects so as to concentrate on
the resonances of the violin include the use of many
microphones,’® and the use of a reverberation
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Figure 3. Response curve of a Stradivarius violin (the ‘Titian’ of 1715, after Saunders’'). Sound
intensity at one microphone position is plotted against frequency. The musical notes shown are
those to which the open strings are tuned. The shaded bars indicate the range of variation of
harmonics of the note 440 A during a vibrato cycle.

chamber in place of an anechoic one.***°tA related
measurement on our black box which focuses on the
aspects of body behaviour relevant to the dynamics
of the string motion is the ‘input admittance curve’, a
plot of the amplitude of the transverse bridge motion
which results from the given driving force.”*’

The ‘spikiness’ of violin response curves has a
simple but crucial consequence. When a note is
played with vibrato on the instrument, the frequency
of each harmonic moves up and down over a range
of up to a semitone, as suggested by the shaded bars
in Fig. 3. It is plain that the response curve can have
considerable variations within such ranges, different
for each harmonic. Thus in addition to frequency
fluctuations, the output waveform from the black
box will exhibit appreciable fluctuations in the spec-
trum of harmonics, with some increasing in strength
while others decrease. This fact was first pointed out
by Fletcher and Sanders,*' who also showed by
simple listening tests that the effect is essential to the
characteristic subjective quality of violin sound. The
listener does not generally notice the spectral varia-
tions as such; rather, these are ‘feature detected’ in
terms of tone quality — an intermediate time scale
effect. If vibrato is played in ‘slow motion’ it is no
longer feature detected in this way, and the spectral
and frequency fluctuations become clearly audible as
such.

Response curves and input admittance curves can
be readily calculated for simplified theoretical
models of instrument bodies, and these calculations
compared with measurements such as Fig. 3. Such
comparison enables the model to be adjusted to
bring it into closer agreement with the observations,

in the process giving insight into the physical mean-
ing of specific features of the measured curves.
Beldie,” for instance, used a simplified mechanical
model of the violin body to elucidate its low
frequency behaviour. Another such model is cur-
rently being studied by Cox and Fellgett.*’
Reinicke'® used a similarly simple model of the
bridge dynamics, and convincingly showed the
importance of bridge modes to the response above
2 kHz.

Schelleng,22 in an earlier paper which has become
a classic in the field, used an electric circuit analogue
model to elucidate a wide range of questions. These
included the general shape of the response curve, the
role of the lowest ‘air’ mode in promoting efficient
radiation above its resonant frequency, and also the
mechanism of the ‘wolf note’ to which we shall
return briefly in a later section. In addition Schelleng
established rules for scaling of different instruments
of the violin family to give approximately the same
relative response curve with instruments of different
tunings.”® This throws light on the differences
between the conventional violin, viola and ‘cello,
which are not scaled in this way.

Attempts have been made to associate many of
the subjective characteristics of instruments with
recognisable features of response curves — we have
already mentioned the ‘spectrum vibrato’ effect.
Another point which seems fairly well
established®”*** is that relatively strong response at
the lowest frequencies is a characteristic of those
violins traditionally most admired by musicians.
‘Relative strength’ is a matter of some delicacy: ‘the
master maker’, it appears, ‘must conserve every

tA new ard promising experimental approach has recently been Initiated by Arnold and Weinreich.79
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decibel with miserly care’.** It is of interest that the
so-called ‘soundpost’ inside the body, known in
French as the ‘soul’ of the instrument, plays a crucial
role in the low frequency response. Its asymmetric
position promotes the oscillatory volume changes
which the air in the cavity must undergo, as every
acoustician knows, if there is to be efficient radiation
at low frequencies.s‘”_“

Attempts to discern further subjectively important
features of response curves run into two severe
difficulties. The first difficulty is the obvious one, that
with real instruments it is never possible to vary one
parameter while keeping everything else constant;
any two real instruments differ in a large number of
ways. The second difficulty is that of eommunleatmg
subjective impressions in words: thus Meinel,’
the course of a summary of many years’ work on
response curves, states that ‘small amplitudes near
1500 cycles per second prevent a very nasal charac-
ter’, and it is clear from the context that this nasal
quality is considered undesirable. The word ‘nasal’,
however, has different meanings for different
authors: to Leipp™*® it is one attribute of the desirable
old Italian sound.

What is needed is the type of experiment indicated
in the third section, and this has been very ele-
gantly provided by Mathews and Kohut.*” They
converted the transverse motion of a set of violin
strings into an electrical signal, and then passed this
signal through a set of electronic filters giving a spiky
response function like that of Fig. 3 before listening
to it through a loudspeaker. This approach opens
two very profitable lines of enquiry. First, the elec-
tronic response function can be varied at will,
keeping exactly the same recorded player input, so
that statements like Meinel’s can be put to
controlled listening tests. Second, the strengths and
limitations of the response curve model itself are
revealed by the extent to which the hybrid ‘violin’
can be made to sound in the hands of a competent
player like a monaural recording of a good real
violin.

The conclusion of Mathews' and Kohut's pilot
study was that a reasonable first approximation to
the sound of a real, monaurallytrecorded violin could
indeed be produced. The subjective quality was
fairly sensitive to the sharpness of the resonance
peaks: this appears attrlbutable to the effects on
vibrato and on other transients.’® But none of the
response functions used by Mathews and Kohut
produced a result good enough to fool trained musi-
cians’ ears. It is not yet clear whether this failure
is due primarily to unrealistic features of the
response function, or whether it points to major
inadequacies in the response curve model itself,
such as the neglect of string motion other than
transverse.

One extension of Mathews’ and Kohut’s experi-
ment is being tried with some success by Gorrill,™"
who has incorporated the loudspeaker playing the
processed string signal into the back of the instru-

tand anechoically
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ment being played, a viola in this case. Even though
this necessitates a small loudspeaker, the resulting
sound seems rather more realistic than any that
Mathews and Kohut have yet achieved. One possible
reason is the more realistically variable radiation
pattern of the hybrid instrument, both as the
frequency changes and as the player moves during
performance. (See (i) and (j) on p. 161.)

The more realistic feedback to the player may also
be significant. Another possibility is that, although
Gorrill’s viola body is strongly strutted internally to
minimise vibration, there is a small amount of ‘live’
sound from the instrument which may be audible, in
particular in the starting transients of notes to which
the ear is so sensitive. The systematic blindfold
listening tests required to decide this last point have
not yet been made, as far as we know.

Much more work could, and hopefully will, be

done on this key experiment. A very basic question
is: what kind of changes in response curves are least
noticed by listeners? This question could in principle
be studied by the powerful ‘objective listening test
techniques used in modern psychoacoustics,
although the magnitude of the task is daunting. A
start has been made by Jansson and Gabne!sson
using the technique of ‘long-time-average spectra.”
A related question is suggested by the violinist’s
need, especially in chamber music, to command the
greatest possible range of perceived tone quality. At
least two factors contribute to producing such a
range. First, some violins may produce a greater
variety of waveforms than others, for instance
through the mechanisms to be discussed on pp. 168
and 169. Second, for a given range of bowed string
input waveforms, some response curves more than
others may bring the range of output waveforms into
a part of ‘perceptual space’52 where the ear notices
the changes most.

INTERPRETING THE VIOLIN MAKING
TRADITION

Instead of trying to find out how we want a violin
body to behave, we now look at the instrument-
making tradition to see how a skilled luthier tries to
make it behave. This is a very large field, and there is
by no means perfect agreement between makers on
how the main problems should be handled, or indeed
on what the main problems are. We shall concentrate
on a single example which has shown the sort of
work which can be done in this area: we examine the
methods used by makers to arrive at the best dis-
tribution of thickness in the back and front plates of
an instrument. This process is apparently regarded
by most makers as a major one in determining the
sound and the playing properties of the finished
instrument, and has been investigated in some detail
by makers who use acoustical measurement tech-
niques, notably Meinel>*** and Hutchins.™

INTERDISCIPLINARY SCIENCE REVIEWS, VOL. 3, NO. 2, 1978 163



We describe a commonly used method: once the
outside shape of a plate is completed, the violin
maker hollows it out to achieve a thickness dis-
tribution approximating a standard pattern.
However no two pieces of wood are identical, so no
one pattern can be perfect for all plates. Thus the
luthier makes small adjustments, occasionally hold-
ing the plate up lightly between finger and thumb
and tapping it with a finger. He listens carefully to
the note produced, and more particularly to the
quality of the note, and he tries by his thickness
adjustments to achieve what has been described as a
‘clear, full ring’. He might do this for several posi-
tions of holding and tapping, obtaining in this way
more than one note.

In more scientific terms he makes heuristic obser-
vations of the frequency, damping and mode shape
of one or more vibration modes of the plate, and
adjusts the thickness distribution apparently to
minimise the damping of these modes. Some makers
are also concerned to place the frequencies of
certain modes in a particular place or in a particular
relation to one another. A remarkable feature is the
sensitivity of the method: sometimes a difference can
be heard as a result of removing just 0.1 mm. of
wood from a few square centimetres of a plate of
some 3 mm. thickness.

Hutchins™ comes to the surprising conclusion that
subjectively good results in the finished instrument
can be achieved by confining attention to a few of
the gravest modes of the plates in their unattached
state. Their frequencies cover only a small part of
the audible range, and in any case the plates behave
quite differently under the different boundary
conditions in the assembled instrument. Thus it
would seem that the free plate modes are in some
way acting as barometers for the behaviour of the
plates under fairly general circumstances, and if this
could be understood we might learn much about
desirable behaviour of violin bodies. Some preli-
minary guesses about such barometer effects have
been made on the basis of modelling simpler systems
than violin plates.>®

The extensive measurements of Hutchins have
revealed much detail about the changes in the vibra-
tion properties of plates over the entire audible
frequency range as such plate tuning operations are
carried out. Three main methods have been used to
this end. One is to measure frequency response
curves of the plate by driving it sinusoidally with an
electromagnetic transducer and detecting the resul-
ting radiated sound at a standard microphone posi-
tion in a standard room.”® The other two are ways of
visualizing individual vibration modes of the plate,
to see how their frequencies, shapes and amplitudes
vary.

The first method is the classical one of observing
Chladni patterns: the plate is caused to vibrate in the
required mode, and powder is sprinkled on it to
make the nodal lines visible. The second is the much
more modern technique of hologram interferometry,
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used for studies of violin plates and complete
instruments by Stetson and Agren,”® Jansson, Molin
and Sundin,”” and Reinicke and Cremer.?® Figure 4
shows the Chladni pattern and the hologram of the
same mode of a violin top plate.

The results obtained by these methods are
sufficiently complex that some theoretical insight is
needed to interpret them usefully. When one tries to
do the theory of plate vibrations it becomes apparent
that, quite apart from the complications associated
with the geometry of the violin, great problems are
posed by the anisotropic structure of wood. Whereas
isotropic materials have only two independent elas-
tic constants, wood has nine in general, and at least
four are significant for flexural vibrations of thin
plates. While all nine constants have been measured
for a few specimens (not generally wood of interest
to instrument makers: see, e.g., Hearmon®”), most
large programmes of measurement list only two.*®

In addition, since makers feel that damping is of
crucial importance, the viscoelastic damping
constants corresponding to each of these elastic
constants should be measured before a relevant
theory is constructed. Information on these damping
constants is even more limited. We should note that
varnish and other treatments of the wood will
modify the viscoelastic constants,** and some
makers partially varnish their plates before final
tuning.

One interesting experimental approach to this
problem is the recent effort by Haines®’ to tailor-

Figure 4. Chladni pattern (left) and holo-
graphic interferogram (right) of a violin top
plate vibrating in one of its natural modes, at
about 320 Hz. Hutchins calls this the ‘ring
mode’ and considers it a particularly valuable
guide to the final adjustment of plate thick-
ness. The fringes in the interferogram
indicate contours of constant vibration amp-
litude. Since the interferogram shows the
outside and the Chladni pattern the inside of
the plate, the left hand photograph has been
reversed to facilitate comparison. (By
permission of C. M. Hutchins and K. A. Stet-
son). For a useful comparison of inter-
ferograms for well- and badly-adjusted
plates, and related acoustical measurements,
see Ref. 56.
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make a synthetic material which reproduces the
relevant properties of spruce, the wood used for the
soundboards of all stringed instruments. The pro-
perties of man-made materials can of course be
manipulated over a wider range and in a more
controlled way than can be achieved with wood.
Nevertheless it is remarkablydifficult to imitate even
a few of the properties of spruce: the reason for the
traditional role of that wood in instrument making is
its almost unique combination of extreme pro-
perties.”

The only material currently available which
combines the low density, high along-grain stiffness
and low damping of spruce is a carbon fibre
composite used in a sandwich construction with a
light core material such as cardboard or balsa wood.
A violin and a guitar have been constructed by
Haines and his collaborators with soundboards of
such a material, and both have been surprisingly
successful.’® We can hope for much more progress in
the near future on this approach, not least because it
has commercial possibilities, until recently a rare
occurrence in musical acoustics.

As an example of the sort of theory which can be
done when the viscoelastic constants are known, the
authors” have explored the simpler problem of the
effect of thickness perturbations on the damping
of vibrations in isotropic materials. This has given
some clues about the relevance to the finished
instrument of the behaviour of the plates before
assembly, and about some of Hutchins’ other
observations.

The results can be represented in pictorial form,
and we illustrate this in Fig. 5. The first column

shows the four lowest modes of a constant thickness
square plate of isotropic material with free edges.
The pictures show the plate in perspective with its
vibrations frozen as by a stroboscope. The amplitude
is exaggerated for clarity. Columns two and three
indicate what happens to the frequency and damping
of these modes when a small perturbation of thick-
ness is introduced. If a small amount is removed
from the plate in a region where the column two
function is positive, the frequency of that mode will
drop, while if the column three function is positive
there, the damping will rise. This applies to each
mode separately, so that a large enough set of these
pictures would show how evcry mode of interest is
affected by the thickness perturbation. Analogous
pictures can readily be computed for flat wooden
plates, but arched plates present computational
problems not yet tackled.

THE BOWED STRING:
RANGES AND WOLF NOTES

TOLERANCE

We now return to our general consideration of levels
of idealization in modelling the violin, and examine
what is known about the motion of the bowed string.
It is at this point that we first confine our interest
strictly to the bowed instruments: our discussion of
body behaviour is applicable in general terms to
plucked instruments.”>*" The largest string motion is
transverse, and most is known about this; the longi-
tudinal and torsional motions, as well as the effect of
bow hair motion, are less well explored.

Figure 5. Computer cal-
culations for vibrations of a
square, isotropic plate of
constant thickness. The first
column shows the lowest
four vibration modes, with
the nodal lines marked. If a
small perturbation of thick-
ness is introduced, the
change in frequency of each
mode is given by the
integral of the perturbation
with the function shown in
column two, while the
change in internal damping
is given by the integral of
the perturbation with the
function in column three.
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Figure 6. Frictional force between bow and
string idealized as a function of their relative
velocity, for constant normal bow force.

The transverse vibration of a stretched string has
been studied since the earliest days of mathematical
physics, and in most textbooks the string is used as
the first and simplest example of a continuous vibra-
tory system, that is a system having an infinite series
of normal modes of vibration and corresponding
natural frequencies. Many scientists are thus
surprised to learn that the transverse motion of a
bowed string presents many unsolved problems of
both practical and mathematical interest. The reason
is that the vibrations are excited by the frictional
force between bow and string, and this force is a
severely nonlinear funcnon of the relative velocity of
the bow and strmg, as illustrated in Fig. 6. This
renders the usual mathematical techniques inap-
plicable. Some of the complexity of the problem is
perhaps intuitively apparent if one considers the
large variety of sounds elicited from a violin in the
hands of a novice, compared with the efforts of a
beginner plucking a guitar string.

The motion of a string during the bowing of a
steady, mezzoforte, musically acceptable note with
the bow falr]y near the bridge was first observed by
Helmholtz.®' The form of this vibration is somewhat
surprising: as illustrated in Fig. 7, at any instant the
string is in two approximately straight portions
separated by a corner which travels back and forth,
tracing out the curved ‘envelope’ of the vibration

Bow

Figure 7. The simplest motion of a bowed
string, first observed by Helmholtz. The
transverse scale is exaggerated. The visible
envelope of the vibration is shown dashed,
together with two ‘snapshots’ of the moving
string at different instants. The position and
direction of motion of the bow are indicated,
and the directions of travel of the Helmholtz
corner. The string is sticking to the bow at
both instants shown.
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visible to the naked eye. Note that the form of this
‘Helmholtz motion’ is to a large extent independent
of the position of the bow, in contrast to the varia-
tion with plucking point of the motion of a plucked
string.

For most of the cycle the string sticks to the bow,
until the ‘corner’ dislodges it, at which the string flies
back rapidly to be recaptured by the bow when the
corner arrives back from the bridge. This essential
timekeeping role of the Helmholtz corner is what is
missing from the usual layman’s explanation of the
bowing mechanism. A simple but very effective
theoretlcal description of the motion was given by
Raman,”" who worked on violin acoustics in his early
years before turning to the work in spectroscopy for
which he won a Nobel prize. Raman also studied
the hierarchy of possible motions having more than
one corner travelling on the string. Such higher
types of motion are readily produced when the
bow is not too close to the bridge, and they are
used by musicians for colouristic effects in sul tasto
playing.

The usual concern of the player, however, is to set
up a Helmholtz motion in the string. He must
control three parameters: bow speed, position of the
bow on the string, and force between the bow and
the string, known perversely by musicians as bow
pressure. He must keep these three quantities within
certain ranges in order that the steady vibration can
exist: these tolerance ranges vary among different
violins and are evidently extremely important pro-
perties of an instrument. A second and more subtle
problem is that he must control the nature and
duration of the transient motions of the string,
especially the starting transient of the note. The ease
with which this can be done may be connected with
the steady state tolerance of the instrument, but
there is as yet little definite knowledge
available.>*"*? We discuss mainly the case of a
steadily bowed note.

For definiteness, suppose that the position and
speed of the bow are kept constant, while the player
gradually increases the force from zero. At first he
elicits a surface sound in which the fundamental is
weak, as in sul ponticello playing. He will then find a
rather sharply defined minimum bow force at which
the Helmholtz motion starts — musicians call this
‘getting into the string’—and a less well defined
maximum force where the note either goes unac-
ceptably out of tune or gives way to a raucous sound,
depending on detailed circumstances.

Minimum bow force was first studied theoretically
and experimentally by Raman.®® Further experi-
mental confirmation of aspects of his theory has
been obtained by Saunders’’ and Lazarus.’ A
synthesis and extension of Raman’s early work was
recently given by Schelleng,'* in whose penetrating
discussion the first explicit theoretical formulae for
both bow force limits were given, as well as a good
deal of physical insight into the bowed string in
general,
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Figure 8. Graph showing the trends of
maximum and minimum bow force as the
bow is moved away from the bridge, for a
given bow speed and a given note on the
instrument. The slope of the minimum bow
force line is twice that of the maximum bow
force line. The graph shows immediately why
bowing near the bridge demands greater
control on the part of the player. (By permis-
sion of J. C. Schelleng and J. Acoust. Soc.
Amer.)

He summarized the results in a graph of typical
force limits against the bowing point as a proportion
of the string length, reproduced in Fig. 8. Schelleng’s
approximate formulae, which in practice should be
viewed as giving orders of magnitude only, express
the facts that above maximum bow force the arrival
of the Helmholtz corner from the nut is insufficient
to cause the string to slip, while below minimum
force the bow fails to keep hold of the string while
the Helmholtz corner is travelling between bow and
nut, The surface sound elicited below minimum bow
force involves two or more slips per cycle.

We should note that the picture of tolerance
ranges given by Fig. 8 becomes over simple when the
bowing point moves too far from the bridge. Casual
experimentation confirms what Raman’s theory
predicts, namely that as the bowing point is moved
toward a simple fraction such as one-fifth or one-
quarter of the string length, the tolerance range
fluctuates wildly. The main reason is the appearance
of the higher types of vibration already mentioned,
which are more complicated than the Helmholtz
motion.

It is instructive to look more closely at the
mechanism behind minimum bow force. For an ideal
textbook string with rigidly fixed ends, minimum
bow force would become zero. The Helmholtz
motion is a free motion of such a string, so that the
bow would not be required at all to maintain it once
it had started. In the real situation the bow is needed
to sustain the motion against small losses, principally
from the ends of the stringﬁ‘]g and ultimately attri-
butable in part to radiation losses. As Schelleng
made clear, it is the rate of loss of energy from the
fundamental that largely determines the position,
though not the slope, of the minimum bow force line
in Fig. 8, and hence the bowing tolerance range for a
given bow position and speed. The losses in turn are
largely determined by the behaviour of the instru-
ment body. This appears to be a major reason for
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variation of tolerance among instruments, and from
note to note on one instrument.®’

The losses tend to be greatest, and hence the
bowing tolerance least, at fundamental string
frequencies corresponding to resonances of the
body.*'*** Also, at such frequencies unusually large
amounts of energy may be stored in body vibrations;
these are particularly noticeable to the player in the
case of the large peak near the top of the first octave
in Fig. 3. This ability to store energy at resonance
implies a time lag in the response of the body, which
can evidently affect the instrument’s transient
behaviour.”® Such a time lag is known to play a
crucial role, moreover, in that more bizarre form of
intolerance, the ‘wolf note’.

THE WOLF NOTE

Suppose that we bow a note whose fundamental
frequency coincides with a strong body resonance,
and that a Helmholtz motion is set up at the start.
The energy stored by the body takes a number of
cycles to build up, and during this time there is a
continual increase in the rate of energy loss from the
string, and hence in minimum bow force, which is
dominated by losses at the fundamental, as
mentioned before. If the minimum bow force
needed exceeds the actual bow force before a steady
state is reached, the Helmholtz motion gives way to
a ‘double slip’ regime, whose onset is indicated by
the arrows in the top curve of Fig. 9. The energy
stored in the body is in just the right phase to pro-
mote the growth of this second slip, which takes over
as a new Helmholtz motion, out of phase with the
old one. Then the whole cycle repeats itself, and the
result is the characteristic stuttering sound which is a
particularly common problem with certain notes on
cellos.
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Figure 9. Simple wolf note (played on the G
string of a violin). Top: waveform of trans-
verse force exerted by string on bridge
(measured by the authors using a piezoelec-
tric transducer developed by W. Reinicke).
Bottom: corresponding frequency spectrum.

INTERDISCIPLINARY SCIENCE REVIEWS, VOL. 3, NO. 2, 1978 167



This qualitative explanation of the simplest kind
of wolf note is substantially due to Raman,®
although he did not make clear the importance of
the phase reversal between alternate cycles of the
wolf. This latter point was first brought out by
Schelleng,” who confirmed Raman’s picture using
an alternative approach to the simplest wolf note
starting from the idea that ‘its behaviour immedi-
ately suggests beating and coupled circuits’.

In technical language, Schelleng’s is a frequency-
domain viewpoint, complementing the time-domain
view of Raman. As might be expected in a strongly
nonlinear problem, some features are easier to
understand from one viewpoint and vice versa, but
the two approaches are consistent! The frequency-
domain viewpoint is suggested by the second curve
of Fig. 9, which shows the frequency spectrum of the
wolf note in the top curve. The fundamental is split
into two peaks of comparable amplitude as predicted
by Schelleng, and the wolf phenomenon can be
described in terms of beating between these.

Raman’s viewpoint readily explains why pressing
harder with the bow can suppress the wolf, at least in
some cases, while Schelleng’s led him to a simple
quantitative criterion for susceptibility to wolves
which shows why cellos are more prone to them than
violins, although Fig. 9, as it happens, comes from a
violin. Both approaches explain why wolves can be
alleviated by fitting a correctly tuned wolf elimina-
tor®® or a lighter string, either of which reduces the
coupling of the string to the body and hence the
maximum stored energy. More complicated wolves,
some of which are analogous to so called multi-
phonics in wind instruments, have been observed by
Raman,®® Firth and Buchanan® and others, and
have been discussed by Benade.” A quantitative
theory covering all known cases has yet to be con-
structed and verified.

MORE REALISTIC MODELS:
CORNERS

ROUNDED

Real strings on real instruments have slightly
anharmonic overtones when allowed to vibrate
freely, and losses occur at different rates for different
overtones.™'%*® One result of this is that the
Helmholtz corner is not perfectly sharp, but is
somewhat rounded. Such corner rounding influences
the string’s response to the bow in a musically
significant way, and models taking account of it are
needed. Such models are analogous to those used by
Benade and others® in work on wind instruments.
However, the friction curve nonlinearity is much
more ill behaved than the nonlinearities encoun-
tered in wind instruments, so Benade’s approach
poses greater difficulties in the case of the bowed
string.

The mathematical technique most promising at
first sight is to seek exactly periodic motions, and

investigate their stability. Predecessors to this line of
work were the studies by Friedlander®® and Keller,”®
although they used the simplest textbook idealisa-
tion of the string. Their models produced some
interesting mathematics — indeed, this is the only area
of our subject which has so far yielded problems of
great formal interest—and Friedlander found the
significant result that dissipation is essential for
stable, periodic motion.

In the models studied by Raman, Friedlander and
Keller there is no change in the string motion as bow
force is varied between maximum and minimum. An
ideally flexible string with a frequency independent
loss mechanism gives no corner rounding, and as
Cremer and Lazarus’'’? first pointed out, corner
rounding is necessary for the observed variation of
string motion within the tolerance range. We thus
require rounded corner models to study such varia-
tion. (It is in constructing such models that the input
admittance curves mentioned on p. 162 are relevant.)

Such models also make possible a closer study of
maximum bow force. As Schelleng realized,'
maximum bow force in practice is generally less than
the force causing catastrophic breakdown of the
musical sound to a raucous sound, and it is signalled
by one of several less drastic phenomena. Of these
phenomena, two matter a great deal to the musician.
The first is that the noise content of an otherwise
musical note can reach an unacceptable level; we
shall return to this subject in the next section.

The second is the very slight deviation of pitch —
almost always on the flat side of the string tuning — as
bow force increases. This flattening is easily demon-
strated with the bow a moderate distance from the
bridge at a low bow speed.”” When flattening is
audible, pitch is sensitive to bow force so that control
of intonation becomes difficult. Players avoid this
regime. It has recently become apparent’*”” that the
flattening effect is strongly connected with the
mechanism of waveform change through corner
rounding, and so we discuss both phenomena
together.

When a rounded Helmholtz corner passes the
bow, the effect of the friction curve nonlinearity is to
sharpen the corner to an extent which depends very
much on bow force. Thus a periodic motion of the
string represents an equilibrium between corner
rounding by the string and its terminations, and
corner sharpening by the bow. As bow force is
increased corner sharpening at the bow becomes
more pronounced, so that the periodic solution has
more high frequency content.”"”?

A further effect comes into play when bow force
exceeds a certain value: the amount of corner shar-
pening during the transition from sticking to slip-
ping, release, is greater than that during the tran-
sition from slipping to sticking, capture.” The result
of this asymmetry is not only a further change in the
shape of the periodic waveform, but also a delay in
the round trip time of the Helmholtz corner. In other
words, as bow force is increased beyond a certain

1But the time-domain viewpoint penetrates the problem further: see ref. 80. Fig. 14.
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limit there is a tendency for the note to play flat, and
the degree of flattening increases with bow force as
observed.”*"°

There is yet another consequence of corner shar-
pening by the bow, first pointed out by Cremer and
Lazarus’"’? and further elucidated by Schelleng.'*
When the shape of the corner transmitted past the
bow is changed, a reflected wave is also generated,
travelling in the opposite direction. These secondary
waves can then reverberate in one section of the
string, reflecting from the sticking bow, until they
happen to arrive at the bow during a slipping phase
in the Helmholtz cycle. The reverberating secondary
waves give rise to a charactexistic pattern of ripples
in the string motion away from the bow, which is
almost certainly an important ingredient of tone
quality,”” although the requisite listening tests have
yet to be made.

In real strings, ripples are also visible in the wave-
form of string velocity at the bow: during the sticking
part of the Helmholtz cycle, the observed velocity is
not exactly equal to the bow velocity.™'*”" This is
not surprising, since the bow hair can yield slightly;
moreover the string can roll on the bow hair. In fact
the latter effect is the larger of the two,”'™'* and
indeed torsional motions are an important aspect of
bowed string behaviour altogether. They affect the
details of the flattening and corner-sharpening effects
already described and they result in extra losses, thus
changing the bowing tolerance limits. Since torsional
yielding of strings is affected by string diameter and
construction while it is not much affected by string
tension, it is clear that bowing tolerances will vary
with different types of strings, as players are well
aware.

A theoretical investigation of the effects of torsion
presents no great difficulty in principle: any method
capable of analysing transverse motion can rather
simply be extended to include torsion.'*”® The
torsional oscillations are known to have a
fundamental frequency several times higher than
those of the transverse n‘}(;sticm,s'14 but their rate of
damping has not yet been satisfactorily measured.
More detailed observations and theory will no doubt
become available soon.

NOISE, CARRYING POWER, AND OTHER
SUBTLETIES

The sound of a real bowed string is more or less
noisy, and in the previous section we mentioned that
maximum bow force can in some circumstances be
governed by the buildup of noise. This is especially
apt to happen when trying to play more and more
loudly near the bridge. This noisy regime is often
used to deliberate musical effect, but the noise can
reach an unacceptable level, depending on context.

The presence of noise indicates some kind of
departure from the periodic motions discussed so
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far. Such departures have been observed: Cremer’”
and others have reported measurements of the
period lengths of many cycles of a bowed string
signal in which variations of up to 30 cents between
the shortest and longest cycles were found (a cent is
a hundredth part of a semitone). The observation
raises two questions. First, is this the source of the
audible noise? Psychoacoustical data’® taken with
headphones suggest that such jitter, or random
variation of period, need only attain 20 cents or so to
be audible. Second, what is the source of the varia-
tion? It could be simply a reflection of external
factors such as the unequal distribution of rosin on
the bow, but on the other hand it could in some way
be intrinsic to the bowed string mechanism, as
Cremer suggested. This would seriously limit the
usefulness of theoretical studies of strictly periodic
motion.

The present authors have recently made some
careful measurements of jitter. The extremely steep
flyback in the sawtooth wave felt by the bridge when
a Helmholtz motion is imparted to the string makes
possible an accurate determination of period length.
One example from our results is shown in Fig. 10: it
appears that maximum ‘flyback jitter’ can be as little
as 3 cents for open strings on a real instrument. This
observation suggests that the bowed string is indeed
capable of precisely periodic motion under at least
some playing conditions. On the other hand,
different conditions, such as when playing a note
high on the violin G string, can produce much more
jitter; and in fact the amount of jitter is found to be
roughly proportional to the amount of corner
rounding, in the sense of the previous section. This is
consistent with the idea that unevenness of bow hair
and rosin is primarily responsible for jitter.

We should not jump to the conclusion that jitter of
less than 20 cents can have no musical effect.
Benade® (second reference) has suggested that in
consequence of the extraordinary sensitivity of the
acoustical behaviour of a large concert hall to any
slight unsteadiness in the sound source, jitter may
reduce the carrying power of an instrument, that is
to say its audibility in a concert hall against a back-
ground of other sound. The amount of jitter needed
to affect carrying power might be smaller than the
threshold for direct audibility in headphones.

Our jitter measurements do however suggest that
the audible noise is not connected with flyback jitter.
Even during loud playing near the bridge, measured
fiyback jitter often remains well below 20 cents.
The source of the audible noise becomes apparent,
however, in Fig. 11. This shows transverse force at
the bridge during a noisy note, which for an ideal
Helmholtz motion would be a sawtooth wave. We
note the aperiodic spikes superimposed on this
sawtooth: many observations have shown that these
always appear when the audible noise builds up.

The main clue about the source of spikes came
from experiments in which strings were bowed with
a smooth, round, rosined stick in place of a bow. It
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Figure 10. Statistical distribution of period
lengths (expressed as departures from a
nominal constant value) for 560 cycles of a
Helmholtz motion bowed by hand on the
open E string of a violin. Special care was
taken to minimize spurious effects such as
drift in string temperature. The total spread is
only three cents or 0.2%.

should be noted, incidentally, that such a stick is
much closer than a real bow to most of the theoreti-
cal idealizations used so far, and as such may prove
an important tool for linking experiments, listening
tests and theory in a wider context than the present
investigation of spikes. With the stick, spikes are
conspicuously absent from the bridge-force wave-
form; and further experimental and theoretical evi-
dence has recently made it clear that the finite width
of the ribbon of bow hair in contact with the string is
the essential ingredient in spike production.”

This discovery reinforces a point made by Schu-
macher,"” that we should examine more closely the
influence of the bow itself. The bow hair and the
stick to which it is attached are by no means rigid,
and will yield to some extent under the fluctuating
friction force. Indeed, we would expect to find some
significant effect of bow dynamics on string motion
since players can distinguish between different bows
by their playing properties.

Investigation into bow behaviour has been rela-
tively neglected in the past. Measurements on
various bows have been made by Schumacher,'® who
has also taken the first steps toward incorporating
bow hair motion in a theoretical treatment of string

Figure 11. Waveform of transverse force
exerted by string on bridge for a loudly
bowed open violin G. The main ‘flybacks’
occur when the Helmholtz corner reflects
from the bridge, and their timing is extremely
regular. By contrast, the ‘spikes’ in between
are aperiodic, and cause audible noise.
(Measured by the authors using a piezoelec-
tric transducer developed by W. Reinicke.)

motion.”® The mathematical problem is closely

analogous to that of incorporating torsional motion
of the string, since again the extra equation involved
is linear, and couples to the others only through the
friction force. This is only the case, however, as long
as the bow is idealized as having infinitesimal width.
To allow fully for finite width of the bow and thus
simulate spike production would be a much more
complicated undertaking?

The final complication is longitudinal string
motion.>"*** Since the length of a string is increased
somewhat when it vibrates transversely, its tension
will also increase, so that at the bridge the fluctuating
force will have a component along the string as well
as transverse to it. A component of this will be
exerted downward on the bridge, and hence on the
instrument. The waveform of this ‘indirect excitation’
will depend on the behaviour of the longitudinal
waves in the string; their fundamental frequency is
typically about three octaves above the fundamental
transverse frequency, as is well known to players who
inadvertently excite them when cleaning rosin from
their strings.

The coupling of these waves to the transverse
motion is nonlinear;'” moreover one finds that
transverse motion with sharp corners in it, like the
Helmholtz motion, is particularly effective for exci-
ting longitudinal motion. Also, the nonlinear coup-
ling implies that a feature of the transverse string
displacement which we omitted for clarity from Fig.
7 becomes important. There is a stationary corner on
the string at the bow caused by the friction force
there; and this force has a substantial steady
component. The result is a significant indirect exci-
tation at the fundamental as well as the octave and
higher harmonics, a point which distinguishes the
violin from the guitar and which has sometimes been
overlooked.

It appears certain that longitudinal motion is
excited in a bowed string, and may have audible

1Progress has nevertheless been made (ref. 80, p. 1343 & refs).
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consequences'~ — especially in starting transients,
and especially with metal strings which have a higher
Young’s modulus than gut strings. The strength of
the indirect excitation is obviously sensitive to the
angle the strings make with the bridge, a parameter
long regarded by makers as critical. A promising first
step toward assessing the importance of indirect
excitation would be to combine Mathews’ and
Kohut’s technique with a simple computer simula-
tion of the longitudinal string motion, to give the
possibility of a listening test in which the indirect
excitation could be switched in and out.

In another ten years, a review similar to this
should be able to report very substantial progress
towards understanding a number of features of
stringed instrument behaviour which are of real
concern to musicians. As has been made clear here,
many lines of investigation are now being pursued
which promise to move toward this goal, many of
which have only recently become available with the
development of computer technology to its present
level.

Neither violin makers nor violin players will be
displaced by this knowledge, but possibly the world’s
very limited supply of top class instruments will

eventually be augmented when a better understand-
ing of what makes a top class instrument, and top
class bows and strings, enables them to be produced
slightly more reliably. Even more important, such
knowledge might raise the standard of mass pro-
duced students’ instruments from the present very
low level to something at least decent, if not
excellent. If in the process our understanding of
auditory perception mechanisms also develops, as
was suggested in the introduction, that will be a
valuable bonus.
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