ENES and PRISM
A European approach to Earth System modelling

Eric Guilyardi
Centre for Global Atmospheric Modelling (CGAM)
University of Reading, UK

and the PRISM team across Europe

Outline:

- ENES, distributed network for earth system modelling
- The PRISM project
- Future
Europe and climate research

• Societal/political needs in Europe high (IPCC, mitigation,...)

• Recognized excellence in climate research:
 - variety of institutes at national level
 - key scientific diversity (models, approaches,...)

• Upcoming challenge:
 - integration of earth system modelling efforts
 - modularity (scientific & technical)

• Increasing international collaborations (US, Japan)
How to optimize Earth System modelling in Europe?

- Need for infrastructures up to the challenge:
 - software (PRISM)
 - hardware

- The « One-big-centre-does-it-all » not suitable:
 - expertise lies within historic centres
 - flexibility is key to research

- Efficiency and costs require sharing infrastructures
ENES: European Network for Earth System modelling

- «Think tank » to organize, plan and seek funding for efficient distributed Earth System modelling in Europe
- Follows a EuroClivar recommendation
- Open to any institute/industry (MoU)
- Coordinated by Guy Brasseur (MPI, Hamburg)
- 60 members so far (http://enes.org)
PRISM: Program for Integrated Earth System Modelling

- Funded by the European Commission FP5 (4.8 M€)
- 22 partners: leading climate research institutes and industrial partners

Coordinators: Guy Brasseur (MPI, Hamburg)
and Gerbrand Komen (KNMI, Amsterdam)
PRISM Director: Reinhard Budich (MPI)
Chair System specifications: Eric Guilyardi (CGAM/Univ. Reading)
Software structure of an Earth System Model

Running environment

Coupling infrastructure

Scientific code

Supporting software

Share

Keep diversity
Towards standard ESM support library(ies)

Today

Earth System model (Science + support)

Fortran Compiler

Hardware

Tomorrow

Earth System model (Science)

Standard support library

Fortran Compiler

Hardware

Modeler

Vendor
PRISM Goals

• Provide software infrastructure to
 – easily assemble earth system model components
 – launch/monitor complex/ensembles earth system models
 – access, analyze and share results across the community

• Share development and maintenance of HPC issues

• Help scientists spend more time on science!

• Define and/or promote community standards to
 – increase scientific and technical modularity
 – ensure HPC performance on a variety of platforms
The science:
- General principles
- Standard physical interfaces

The technical developments:
- System architecture
- Coupler and I/O
- Software management
- Vizualisation and diagnostics

The users:
- GUI interface
- Configuration editor
- Diagnostics outputs

The participating models:
- Atmosphere
- Atmos. Chemistry
- Ocean
- Ocean biogeochemistry
- Sea-ice
- Land surface
- ...
PRISM standards

Scientific: Global parameters
 Physical interfaces

Technical: Coupler and I/O
 Data format and grids
 Architecture and user interface
 Archiving and postprocessing
 Coding and quality

Collaboration with other groups (ESMF, ESG/NOMADS, ES, CF...)

Let’s not re-invent the wheel!
A recommendation for standard physical interfaces

Atmosphere model

1. Rainfall + int. energy
2. Snowfall + int. energy
3. Solar zenith angle
4. Fraction of diffuse solar radiation
5. Downward infrared radiation
6. Sensitivity of atmos temp. & humidity to surf. fluxes

Surface layer turbulence

1. Surface pressure
2. Air temperature, humidity and wind
3. Wind module
4. Height of these 4 variables

Ocean surface module

1. Non solar heat flux
2. Solar radiation
3. Fresh water flux
4. Salt flux
5. Wind stress
6. Mass of snow and ice

Sea ice model

1-2 Temp./Salinity at sea-ice base
3- Surf. radiative temp.
4- Surf. ocean current
5- Surface ocean current
6- Absorbed solar radiation

Wave model

1. Surf. Temp
2. Surf. Roughness
3. Displacement height
4. Surface velocity

Land surface model

1. Continental runoff + internal Energy

Ocean model

Note on subgrid fraction dependance:

<>*- Sea Ice categories (incl. open ocean)
<>*- Sea Ice or Land Surf. categories

Iceberg parameters

1* - Sensible heat flux
2* - Surf. emissivity
3* - Albedo, direct
4* - Albedo, diffuse
5* - Surf. radiative temp.
6* - Evaporation + int. energy [+ Q_{lat}]
7* - Wind stress
8* - Subgrid fractions

Technical standards: PRISM coupler & I/O = OASIS*

10 years of expertise
Wide international use

driver
communicator
interpolator/transformer

*Sophie Valcke (CERFACS)
Technical standards:

- Standard compiling and execution environment (GNU)
- PRISM central server
- Adapt ECMWF’s PrepIFS GUI and SMS scheduler

Architecture** and GUI**

*Stefanie Legutke (MPI)
**Nils Wedi/Claes Larsson (ECMWF)
Technical standards: Archiving and data processing

* Mick Carter (Met Office)
PRISM Status

- PRISM System V.0 ready (June 2003)
 = prototype architecture and OASIS V3.0

- Demonstrations with System V.0 underway

- PRISM System V.1:
 - Prototype (PMIOD, GUI) : November 2003
 - Full monty: November 2004
 = OASIS V4.0, GUI+SMS (web),
 + set of coupled configurations
On going PRISM / ESMF collaboration

Earth System Model

Running environment

Coupling infrastructure

User code

Supporting software
Conclusion

- PRISM = Earth System Modelling tool box, based on international standards

- Will help share development and maintenance costs
- Will ensure HPC performance on main platforms
- Will help maintain a key scientific diversity
Upcoming agenda

- PRISM: community involvement and «buy in»
- Sustained PRISM support and maintenance
- Wider international collaborations (ESMF, ES, China,..)
- Extension of PRISM system (CAPRI):
 - interfaces to data assimilation, integrated assessment
 - European-wide data archiving and retrieval system