The response of tropospheric circulation to perturbations in lower stratospheric heating

Joanna Haigh Imperial College London
Mike Blackburn University of Reading
Rebecca Day Imperial College London
Outline

• GGM studies of response to solar UV.
• Sensitivity experiments.
• Comparison of model results with observational data.
• Understanding the response using a “dynamical core” model.
UGCM
zonal
wind

solarmax-solarmin

(2D model ΔO₃)

Haigh
(Science1996; QJRMS1999)
Further UGCM solarmax-solarmin zonal wind results

Haigh (1999)
UM zonal wind

solarmax-solarmin

Hou (2000) GCM response to “artificial” delta O$_3$
\[\frac{dT}{dt} = 0.02 \text{ K day}^{-1} \text{ in daylight hours (power} = c_p \rho \frac{dT}{dt}) \]

UM zonal wind response to heating of tropical lower stratosphere

Westerly component of wind \(U_w \) (m s\(^{-1}\))

Without heating

With heating
UGCM O$_3$ downward shift experiment

Δu (m s$^{-1}$)

ΔT (K)

Thuburn & Craig (2000)
UGCM mean meridional circulation

change in MMC at 682hPa

Haigh (1999)
UM mean meridional circulation

Larkin (2000)
UM mean meridional circulation (tropical heating experiment)
UGCM mmc

\(\Delta \text{mmc due O}_3 \text{ shift} \)
Multiple regression of observational data

\[y(x, t) = \sum \beta_i(x) f_i(t) + \text{noise} \]

- \(y(x, t) \) are data
- \(f_i(t) \) is time-dependent climate factor \(i \)

10 factors are taken into account:
 - trend
 - solar irradiance
 - volcanic aerosol
 - ENSO
 - NAO
 - QBO
 - amplitude & phase of annual cycle
 - amplitude & phase of semi-annual cycle
Regression results: NCEP Tbar

mean
trend

ENSO
NAO

solar
volcanic

solar (+95% sig)
volcanic (+95% sig)

Haigh (Phil.Trans. 2003)
Regression results: NCEP ubar

Mean

Solar

Trend

Volcanic

ENSO

Components (35°N, 200hPa)

NAO

Components (30°S, 200hPa)
NCEP u-bar regression results
Dynamical core model experiments

As Held and Suarez (1994):
 Full dynamics T42 L20. No orography.
 Newtonian cooling (equinoctial radiative equilibrium temperatures). Rayleigh friction.

All experiments involved heating the lower stratosphere:
 • 1K at all latitudes
 • 1K at equator, cos²(lat) variation
 • 5K at all latitudes
 • 5K at equator, cos²(lat) variation

All runs 1200 days.
Temperatures
rad. eq.
control run

Whistler 02/05/03 18
Uniform heating expt
\(\nabla F \)

Uniform heating expt
$\cos^2(\text{lat})$ heating expt.
\(\nabla' \cdot \mathbf{T}' \)

\(u'v' \)

\(\nabla \cdot \mathbf{EPF} \)

\(\cos^2(\text{lat}) \)

heating expt.
uniform heating \(\cos^2(\text{lat}) \) heating

ubar

5K heating

1K heating
uniform heating \hspace{1cm} \text{cos}^2(\text{lat}) \text{ heating}

5K heating

shaded areas not statistically significant at 95\% level

1K heating
ubar

control

uniform heating

$\cos^2(\text{lat})$ heating
mean meridional circulation

control

uniform heating

$\cos^2(\text{lat})$ heating
TEM residual circulation

control

uniform heating

\(\cos^2(\text{lat})\) heating
Conclusions - I

• Model simulations show a characteristic pattern of response to enhanced solar UV: the sub-tropical jets weaken & move poleward, the Hadley cells weaken.

• The same patterns, with similar magnitudes, are found in multiple regression studies of observational data.
Conclusions - II

- Results from a simplified model suggest that:

(a) Heating of the lower stratosphere tends to weaken the sub-tropical jets as a result of reduced eddy activity.

(b) The distribution of the heating in the stratosphere determines any shift in position of the jets.