Modeling the influence of the stratosphere on tropospheric climate

Warwick Norton
Department of Physics
University of Oxford
UK
Why use models?

• Prediction
 ➢ Days to weeks
 ➢ Climate change

• Understanding mechanisms
 ➢ Model sensitivity experiments
 ➢ Long integrations to give good statistics
Modeling limitations

• Understanding the response can be complicated because of inherent nonlinearities

• Mechanisms may not be relevant to the real atmosphere because of unrealistic model climate
Example case studies

- Changes in mean state from:
 - Upper boundary condition
 - Stratospheric ozone
 - Climate change

- Variability
- Predictability
Upper boundary condition

- Early version of CCM
- Control with upper boundary at 0.1 hPa
- Low top with upper boundary at 10 hPa
- Rayleigh friction in mesosphere
- Perpetual January

Boville and Cheng (1988)
Zonal Mean Winds

- Change in eddy momentum fluxes results in stronger jet
- Significant response extends to surface
500 hPa height difference
Phase of wave 1

- Low top reflects stratospheric stationary waves
- Tropospheric stationary waves respond to mean wind distribution
Stratospheric ozone loss

- ARPEGE GCM
- Control and ozone loss experiments

Trends in total ozone (%/decade) based on Herman et al. (1993)

Kindem and Christiansen (2001)
March mean height difference

- Strengthened polar vortex leads to +ve NAM response in the troposphere
Climate change

- What is the role of the stratosphere in the increasing surface AO?
Predictions of change in surface AO with increased greenhouse gas forcing

Gillett et al. (2001)
Modeling climate change: GISS model

• 100 year model run with increasing greenhouse gases

• Two versions of model
 ➢ 23 layer model with good representation of the stratosphere
 ➢ 9 layer model with poor stratosphere

Shindell et al. (1999)
Stratospheric NAM (23 layer model)

Year

More +ve NAM with stronger polar vortex and increased westerly winds
Surface Arctic Oscillation (23 layer model)

Increasing AO which then levels off
• Stratospheric wave refraction leads to stronger polar vortex
• Stratosphere important in surface AO trend
Modeling climate change: Hadley Centre Model

- Model runs with pre-industrial and 2XCO$_2$ levels of greenhouse gases
- Two versions of model
 - 64 layer model with good representation of the stratosphere
 - 19 layer model with poor stratosphere

Gillett et al. (2002)
Difference in January Temperatures

64 level model

19 level model

Stratosphere gets colder

Troposphere gets warmer

Polar stratosphere gets warmer
Difference in January Winds

Reduced westerly winds leading to reduced stratospheric NAM

Different in 19 level model
Difference in surface pressure

19 level model

- Blue decrease
- Yellow increase
- Shaded regions significant

• Results for 64 layer model are not distinguishable from 19 layer model
• Increased planetary wave-driving of the stratosphere
• Stratosphere not important in surface AO trend
Variability

• Hadley Centre model
• 26 member ensemble experiments
• Control – normal Rayleigh friction (RF)
• Strong drag – RF profile moved down 10 km

• Damping of planetary waves in upper stratosphere
• Change in mean state
• Lead to no stratospheric warmings in strong drag experiment
Histograms of daily NAM Index for November-March

Strong drag experiment at both 10 hPa and surface has:

• Shift in mean NAM to -ve values
• Less variability
• Reduction in memory of surface AO from less variable stratosphere
Predictability

- CCM1
- McFarlane GWD with weak Rayleigh friction in mesosphere
- Model twin experiments run every 10 days from control integration
- Compare errors from initial value perturbations and low-top version of model

Boville and Baumhefner (1990)
• Errors from low-top model similar to initial value perturbations after 10-15 days
Zonal mean wind error
low-top minus control

- Equatorward shift of stratospheric jet, opposite shift in troposphere
- Difference in stratospheric mean response from Boville & Cheng due to inclusion of GWD scheme?
Questions

• How good a representation of the stratosphere is needed to accurately model tropospheric climate and climate change?

• What are the mechanisms (in models) by which the stratosphere influences the mean, variability and predictability of the troposphere?

• How sensitive are these mechanisms to the physical formulation in models?

• How to design experiments and compare models to understand the role of the stratosphere on tropospheric climate change?
Downward propagation of errors